Cargando…
Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study
Anticancer-drug delivery is now becoming a challenging approach for researchers as it allows controlled drug delivery near cancerous cells with minimized generic collection and the avoidance of secondary side effects. Hence in this work, the applications of nanostructures as anticancer drug-delivery...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979131/ https://www.ncbi.nlm.nih.gov/pubmed/35425316 http://dx.doi.org/10.1039/d1ra09319c |
_version_ | 1784681108651114496 |
---|---|
author | Bibi, Shamsa Ur-rehman, Shafiq Khalid, Laryeb Bhatti, Ijaz Ahmad Bhatti, Haq Nawaz Iqbal, Javed Bai, Fu Quan Zhang, Hong-Xing |
author_facet | Bibi, Shamsa Ur-rehman, Shafiq Khalid, Laryeb Bhatti, Ijaz Ahmad Bhatti, Haq Nawaz Iqbal, Javed Bai, Fu Quan Zhang, Hong-Xing |
author_sort | Bibi, Shamsa |
collection | PubMed |
description | Anticancer-drug delivery is now becoming a challenging approach for researchers as it allows controlled drug delivery near cancerous cells with minimized generic collection and the avoidance of secondary side effects. Hence in this work, the applications of nanostructures as anticancer drug-delivery carriers were widely investigated to target cancerous tissues. Based on DFT calculations, we investigated the transition metal-doped boron nitride nanostructure as a drug-delivery agent for the gemcitabine drug utilizing the B3LYP/6-31G (d, p) level of theory. In this research, the adsorption energy and electronic parameters of gemcitabine on the interaction with the metal-doped BN nanostructures were studied. It has been observed that metal doping significantly enhances the drug-delivery properties of BN nanostructures. Among the investigated nanostructures, Ni–BN has been found to be the most prominent nanostructure to transport gemcitabine with an elevated value of adsorption energy in both the gas phase (−45.79) and water media (−32.46). The interaction between gemcitabine and BN nanostructures was confirmed through frontier molecular orbitals and stabilization energy analysis. The fractional charge transfer, MEP, NCI, and NBO analyses exposed the charge transfer from drug molecule to the BN nanostructures. Transition density maps and UV-VIS spectra were also plotted to investigate the excited-state properties of the designed complexes. Thus, the present study provides an in-depth interaction mechanism of the gemcitabine drug with BN, which reveals that metal-doped BN nanostructures can be a favorable drug-delivery vehicle for the gemcitabine anticancer drug. |
format | Online Article Text |
id | pubmed-8979131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89791312022-04-13 Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study Bibi, Shamsa Ur-rehman, Shafiq Khalid, Laryeb Bhatti, Ijaz Ahmad Bhatti, Haq Nawaz Iqbal, Javed Bai, Fu Quan Zhang, Hong-Xing RSC Adv Chemistry Anticancer-drug delivery is now becoming a challenging approach for researchers as it allows controlled drug delivery near cancerous cells with minimized generic collection and the avoidance of secondary side effects. Hence in this work, the applications of nanostructures as anticancer drug-delivery carriers were widely investigated to target cancerous tissues. Based on DFT calculations, we investigated the transition metal-doped boron nitride nanostructure as a drug-delivery agent for the gemcitabine drug utilizing the B3LYP/6-31G (d, p) level of theory. In this research, the adsorption energy and electronic parameters of gemcitabine on the interaction with the metal-doped BN nanostructures were studied. It has been observed that metal doping significantly enhances the drug-delivery properties of BN nanostructures. Among the investigated nanostructures, Ni–BN has been found to be the most prominent nanostructure to transport gemcitabine with an elevated value of adsorption energy in both the gas phase (−45.79) and water media (−32.46). The interaction between gemcitabine and BN nanostructures was confirmed through frontier molecular orbitals and stabilization energy analysis. The fractional charge transfer, MEP, NCI, and NBO analyses exposed the charge transfer from drug molecule to the BN nanostructures. Transition density maps and UV-VIS spectra were also plotted to investigate the excited-state properties of the designed complexes. Thus, the present study provides an in-depth interaction mechanism of the gemcitabine drug with BN, which reveals that metal-doped BN nanostructures can be a favorable drug-delivery vehicle for the gemcitabine anticancer drug. The Royal Society of Chemistry 2022-01-20 /pmc/articles/PMC8979131/ /pubmed/35425316 http://dx.doi.org/10.1039/d1ra09319c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Bibi, Shamsa Ur-rehman, Shafiq Khalid, Laryeb Bhatti, Ijaz Ahmad Bhatti, Haq Nawaz Iqbal, Javed Bai, Fu Quan Zhang, Hong-Xing Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study |
title | Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study |
title_full | Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study |
title_fullStr | Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study |
title_full_unstemmed | Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study |
title_short | Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study |
title_sort | investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a dft study |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979131/ https://www.ncbi.nlm.nih.gov/pubmed/35425316 http://dx.doi.org/10.1039/d1ra09319c |
work_keys_str_mv | AT bibishamsa investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy AT urrehmanshafiq investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy AT khalidlaryeb investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy AT bhattiijazahmad investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy AT bhattihaqnawaz investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy AT iqbaljaved investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy AT baifuquan investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy AT zhanghongxing investigationoftheadsorptionpropertiesofgemcitabineanticancerdrugwithmetaldopedboronnitridefullerenesasadrugdeliverycarrieradftstudy |