Cargando…
Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine
An ultra-sensitive sensor of dopamine is introduced. The sensor is constructed by encapsulating platinum nanoparticles (PtNPs) between reduced graphene oxide (GR) nanosheets. The sandwiched PtNPs between GR layers acted as a spacer to prevent aggregation and provided a fine connection between the GR...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979215/ https://www.ncbi.nlm.nih.gov/pubmed/35425276 http://dx.doi.org/10.1039/d1ra08464j |
_version_ | 1784681128239562752 |
---|---|
author | Baig, Nadeem Kawde, Abdel-Nasser Elgamouz, Abdelaziz Morsy, Mohamed Abdelfattah, Ahmed Mohsen Othaman, Rizafizah |
author_facet | Baig, Nadeem Kawde, Abdel-Nasser Elgamouz, Abdelaziz Morsy, Mohamed Abdelfattah, Ahmed Mohsen Othaman, Rizafizah |
author_sort | Baig, Nadeem |
collection | PubMed |
description | An ultra-sensitive sensor of dopamine is introduced. The sensor is constructed by encapsulating platinum nanoparticles (PtNPs) between reduced graphene oxide (GR) nanosheets. The sandwiched PtNPs between GR layers acted as a spacer to prevent aggregation and provided a fine connection between the GR nanosheets to provide fast charge transfer. This specific orientation of the GR nanosheets and PtNPs on the graphite pencil electrode (GPE) substantially improved the electrocatalytic activity of the sensor. The synthesized graphene oxide and the fabricated sensor were comprehensively characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission-scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square wave voltammetry (SWV). The value of the charge transfer coefficient (α), apparent heterogeneous electron transfer rate constant (k(s)), and electroactive surface area for dopamine were found to be about 0.57, 8.99 s(−1), and 0.81 cm(2), respectively. The developed sensor is highly sensitive towards dopamine, and the detection limit is 9.0 nM. The sensor response is linear for dopamine concentration from 0.06 to 20 μM (R(2) = 0.9991). The behavior of the sensor for dopamine in the presence of a high concentration of l(+) Ascorbic acid and other potential interferents was satisfactory. High recovery percentage between 90% and 105% in the human urine sample, good reproducibility, and facile fabrication of the electrode make it a good candidate for dopamine sensing. |
format | Online Article Text |
id | pubmed-8979215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89792152022-04-13 Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine Baig, Nadeem Kawde, Abdel-Nasser Elgamouz, Abdelaziz Morsy, Mohamed Abdelfattah, Ahmed Mohsen Othaman, Rizafizah RSC Adv Chemistry An ultra-sensitive sensor of dopamine is introduced. The sensor is constructed by encapsulating platinum nanoparticles (PtNPs) between reduced graphene oxide (GR) nanosheets. The sandwiched PtNPs between GR layers acted as a spacer to prevent aggregation and provided a fine connection between the GR nanosheets to provide fast charge transfer. This specific orientation of the GR nanosheets and PtNPs on the graphite pencil electrode (GPE) substantially improved the electrocatalytic activity of the sensor. The synthesized graphene oxide and the fabricated sensor were comprehensively characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission-scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square wave voltammetry (SWV). The value of the charge transfer coefficient (α), apparent heterogeneous electron transfer rate constant (k(s)), and electroactive surface area for dopamine were found to be about 0.57, 8.99 s(−1), and 0.81 cm(2), respectively. The developed sensor is highly sensitive towards dopamine, and the detection limit is 9.0 nM. The sensor response is linear for dopamine concentration from 0.06 to 20 μM (R(2) = 0.9991). The behavior of the sensor for dopamine in the presence of a high concentration of l(+) Ascorbic acid and other potential interferents was satisfactory. High recovery percentage between 90% and 105% in the human urine sample, good reproducibility, and facile fabrication of the electrode make it a good candidate for dopamine sensing. The Royal Society of Chemistry 2022-01-12 /pmc/articles/PMC8979215/ /pubmed/35425276 http://dx.doi.org/10.1039/d1ra08464j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Baig, Nadeem Kawde, Abdel-Nasser Elgamouz, Abdelaziz Morsy, Mohamed Abdelfattah, Ahmed Mohsen Othaman, Rizafizah Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine |
title | Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine |
title_full | Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine |
title_fullStr | Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine |
title_full_unstemmed | Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine |
title_short | Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine |
title_sort | graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979215/ https://www.ncbi.nlm.nih.gov/pubmed/35425276 http://dx.doi.org/10.1039/d1ra08464j |
work_keys_str_mv | AT baignadeem graphenenanosheetsandwichedplatinumnanoparticlesdepositedonagraphitepencilelectrodeasanultrasensitivesensorfordopamine AT kawdeabdelnasser graphenenanosheetsandwichedplatinumnanoparticlesdepositedonagraphitepencilelectrodeasanultrasensitivesensorfordopamine AT elgamouzabdelaziz graphenenanosheetsandwichedplatinumnanoparticlesdepositedonagraphitepencilelectrodeasanultrasensitivesensorfordopamine AT morsymohamed graphenenanosheetsandwichedplatinumnanoparticlesdepositedonagraphitepencilelectrodeasanultrasensitivesensorfordopamine AT abdelfattahahmedmohsen graphenenanosheetsandwichedplatinumnanoparticlesdepositedonagraphitepencilelectrodeasanultrasensitivesensorfordopamine AT othamanrizafizah graphenenanosheetsandwichedplatinumnanoparticlesdepositedonagraphitepencilelectrodeasanultrasensitivesensorfordopamine |