Cargando…

Trajectory-based characteristic analysis and decision modeling of the lane-changing process in intertunnel weaving sections

Existing lane-changing models generally neglect the detailed modeling of lane-changing actions and model lane-changing only as an instantaneous event. In this study, an intertunnel weaving section was taken as the background, the lane-changing duration and distance in the lane-changing process were...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yi, Wang, Zhiqi, Wu, Yuxuan, Ma, Jianxiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979431/
https://www.ncbi.nlm.nih.gov/pubmed/35377917
http://dx.doi.org/10.1371/journal.pone.0266489
Descripción
Sumario:Existing lane-changing models generally neglect the detailed modeling of lane-changing actions and model lane-changing only as an instantaneous event. In this study, an intertunnel weaving section was taken as the background, the lane-changing duration and distance in the lane-changing process were taken as the main research objects. The detailed modeling of a lane-changing action was emphasized. Aerial videos of intertunnel weaving sections were collected, and accurate vehicle trajectory data were extracted. Basic data analysis shows that the lane-changing duration has a lognormal distribution and the lane-changing distance has a normal distribution. To analyze the difference of the lane-changing behavior characteristics in different lane-changing environments, based on the lead spacing and lag spacing in the target lane, a hierarchical clustering algorithm was applied to classify the lane-changing environment into six different types. Then, a deep neural network regression model was applied to model the lane-changing process for each environment type. The results show that the horizontal distribution, vertical distribution and statistical characteristics of the lane changing points under different lane-changing environments are significantly different. The prediction accuracy of the lane-changing distance after classification is improved by at least 61%, and the prediction accuracy of the lane-changing duration after classification is improved by at least 57%. It is also found that lane-changing behavior characteristics with large or small lag spacing are easier to predict, while in the other cases, the randomness of the lane-changing behavior characteristics is more obvious. The research results can be incorporated into lane-changing decision assistance systems and micro traffic simulation models to make the assistance system safer and more effective, and the simulation outputs should be more realistic and accurate.