Cargando…

Synaptic Plasticity is Altered by Treatment with Pharmacological Levels of Retinoic Acid Acting Nongenomically However Endogenous Retinoic Acid has not been shown to have Nongenomic Activity

Retinoic acid (RA) is the active form of vitamin A that functions as a ligand for nuclear RA receptors that directly bind genomic control regions to regulate gene expression. However, some studies have suggested that RA may have nongenomic effects outside of the nucleus, particularly with regard to...

Descripción completa

Detalles Bibliográficos
Autor principal: Duester, Gregg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979490/
https://www.ncbi.nlm.nih.gov/pubmed/35382260
Descripción
Sumario:Retinoic acid (RA) is the active form of vitamin A that functions as a ligand for nuclear RA receptors that directly bind genomic control regions to regulate gene expression. However, some studies have suggested that RA may have nongenomic effects outside of the nucleus, particularly with regard to synaptic plasticity. Recent results demonstrate that treatment with pharmacological levels of RA can alter synaptic plasticity which may be useful to treat neurological diseases. However, these results and those reported by others have not shown that endogenous RA is normally required for synaptic plasticity (or any other nongenomic effect) as there are no reports of genetic loss of function studies that remove endogenous RA in adult brain. The implication is that pharmacological levels of RA result in nongenomic effects, some of which may be helpful to treat certain diseases but in other cases this may cause unwanted side effects.