Cargando…
Predicting Lymphoma Development by Exploiting Genetic Variants and Clinical Findings in a Machine Learning-Based Methodology With Ensemble Classifiers in a Cohort of Sjögren's Syndrome Patients
Lymphoma development constitutes one of the most serious clinico-pathological manifestations of patients with Sjögren's Syndrome (SS). Over the last decades the risk for lymphomagenesis in SS patients has been studied aiming to identify novel biomarkers and risk factors predicting lymphoma deve...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979630/ https://www.ncbi.nlm.nih.gov/pubmed/35402956 http://dx.doi.org/10.1109/OJEMB.2020.2965191 |
Ejemplares similares
-
Prediction of plant lncRNA by ensemble machine learning classifiers
por: Simopoulos, Caitlin M. A., et al.
Publicado: (2018) -
Exploiting the noise: improving biomarkers with ensembles of data analysis methodologies
por: Starmans, Maud HW, et al.
Publicado: (2012) -
A stacking ensemble classifier-based machine learning model for classifying pollution sources on photovoltaic panels
por: Khan, Prince Waqas, et al.
Publicado: (2023) -
Single classifier vs. ensemble machine learning approaches for mental health prediction
por: Chung, Jetli, et al.
Publicado: (2023) -
Prediction of diabetes disease using an ensemble of machine learning multi-classifier models
por: Abnoosian, Karlo, et al.
Publicado: (2023)