Cargando…
Renal Cancer Detection: Fusing Deep and Texture Features from Histopathology Images
Histopathological images contain morphological markers of disease progression that have diagnostic and predictive values, with many computer-aided diagnosis systems using common deep learning methods that have been proposed to save time and labour. Even though deep learning methods are an end-to-end...
Autores principales: | Cai, Jianxiu, Liu, Manting, Zhang, Qi, Shao, Ziqi, Zhou, Jingwen, Guo, Yongjian, Liu, Juan, Wang, Xiaobin, Zhang, Bob, Li, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979690/ https://www.ncbi.nlm.nih.gov/pubmed/35386304 http://dx.doi.org/10.1155/2022/9821773 |
Ejemplares similares
-
Fusing Local Shallow Features and Global Deep Features to Identify Beaks
por: He, Qi, et al.
Publicado: (2023) -
Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features
por: Sun, Xinkai, et al.
Publicado: (2023) -
Texture features in the Shearlet domain for histopathological image classification
por: Alinsaif, Sadiq, et al.
Publicado: (2020) -
High-Resolution Histopathological Image Classification Model Based on Fused Heterogeneous Networks with Self-Supervised Feature Representation
por: Lai, Zhi-Fei, et al.
Publicado: (2022) -
Histopathology of fused triplet placenta in rat
por: Furukawa, Satoshi, et al.
Publicado: (2023)