Cargando…
Augmentation-Consistent Clustering Network for Diabetic Retinopathy Grading with Fewer Annotations
Diabetic retinopathy (DR) is currently one of the severe complications leading to blindness, and computer-aided, diagnosis technology-assisted DR grading has become a popular research trend especially for the development of deep learning methods. However, most deep learning-based DR grading models r...
Autores principales: | Zhang, Guanghua, Li, Keran, Chen, Zhixian, Sun, Li, zhang, Jianwei, Pan, Xueping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979701/ https://www.ncbi.nlm.nih.gov/pubmed/35388319 http://dx.doi.org/10.1155/2022/4246239 |
Ejemplares similares
-
Diabetic Retinopathy Grading by Deep Graph Correlation Network on Retinal Images Without Manual Annotations
por: Zhang, Guanghua, et al.
Publicado: (2022) -
Fewer clouds in the Mediterranean: consistency of observations and climate simulations
por: Sanchez-Lorenzo, Arturo, et al.
Publicado: (2017) -
Macrophage/microglia polarization for the treatment of diabetic retinopathy
por: Yao, Yujia, et al.
Publicado: (2023) -
Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters
por: van Iersel, Leo, et al.
Publicado: (2010) -
Mining GO Annotations for Improving Annotation Consistency
por: Faria, Daniel, et al.
Publicado: (2012)