Cargando…
EEG Feature Extraction and Data Augmentation in Emotion Recognition
Emotion recognition is a challenging problem in Brain-Computer Interaction (BCI). Electroencephalogram (EEG) gives unique information about brain activities that are created due to emotional stimuli. This is one of the most substantial advantages of brain signals in comparison to facial expression,...
Autores principales: | Kalashami, Mahsa Pourhosein, Pedram, Mir Mohsen, Sadr, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979741/ https://www.ncbi.nlm.nih.gov/pubmed/35387250 http://dx.doi.org/10.1155/2022/7028517 |
Ejemplares similares
-
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Feature extraction based on microstate sequences for EEG–based emotion recognition
por: Chen, Jing, et al.
Publicado: (2022) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2023) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018)