Cargando…

Effects of benzydamine and mouthwashes containing benzydamine on Candida albicans adhesion, biofilm formation, regrowth, and persistence

OBJECTIVES: To assess the effects of benzydamine and mouthwashes (MoWs) containing benzydamine on different stages of Candida albicans biofilm: adhesion, formation, persistence, and regrowth (if perturbed). MATERIALS AND METHODS: C. albicans CA1398, carrying the bioluminescence ACT1p-gLUC59 fusion p...

Descripción completa

Detalles Bibliográficos
Autores principales: Ardizzoni, Andrea, Boaretto, Giorgia, Pericolini, Eva, Pinetti, Diego, Capezzone de Joannon, Alessandra, Durando, Lucia, Ragni, Lorella, Blasi, Elisabetta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979862/
https://www.ncbi.nlm.nih.gov/pubmed/35066687
http://dx.doi.org/10.1007/s00784-021-04330-8
Descripción
Sumario:OBJECTIVES: To assess the effects of benzydamine and mouthwashes (MoWs) containing benzydamine on different stages of Candida albicans biofilm: adhesion, formation, persistence, and regrowth (if perturbed). MATERIALS AND METHODS: C. albicans CA1398, carrying the bioluminescence ACT1p-gLUC59 fusion product, was employed. Fungal cells were exposed for 1′, 5′, or 15′ to 4 different benzydamine concentrations (0.075 to 0.6%) to 2 mouthwashes (MoWs) containing benzydamine and to a placebo MoW (without benzydamine). Treated cells were tested for adhesion (90 min) and biofilm formation (24-h assay). Next, 24- and 48-h-old biofilms were exposed to benzydamine and MoWs to assess regrowth and persistence, respectively. The effects of benzydamine, MoWs containing benzydamine, and placebo on different biofilm stages were quantified by bioluminescence assay and by the production of quorum sensing (QS) molecules. RESULTS: Benzydamine and MoWs containing benzydamine impaired C. albicans ability to adhere and form biofilm, counteracted C. albicans persistence and regrowth, and impaired a 48-h-old biofilm. Some of these effects paralleled with alterations in QS molecule secretion. CONCLUSIONS: Our results show for the first time that benzydamine and MoWs containing benzydamine impair C. albicans capacity to form biofilm and counteract biofilm persistence and regrowth. CLINICAL RELEVANCE: Benzydamine and MoWs containing benzydamine capacity to affect C. albicans biofilm provides an interesting tool to prevent and treat oral candidiasis. Likely, restraining C. albicans colonization through daily oral hygiene may counteract colonization and persistence by other critical oral pathogens, such as Streptococcus mutans, whose increased virulence has been linked to the presence of C. albicans biofilm. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00784-021-04330-8.