Cargando…
Using a Machine Learning Approach to Identify Key Biomarkers for Renal Clear Cell Carcinoma
BACKGROUND: The most common and deadly subtype of renal carcinoma is kidney renal clear cell carcinoma (KIRC), which accounts for approximately 75% of renal carcinoma. However, the main cause of death in KIRC patients is tumor metastasis. There are no obvious clinical features in the early stage of...
Autores principales: | Han, Xiaying, Song, Dianwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980298/ https://www.ncbi.nlm.nih.gov/pubmed/35392028 http://dx.doi.org/10.2147/IJGM.S351168 |
Ejemplares similares
-
Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma
por: Li, Meng-Xiang, et al.
Publicado: (2021) -
MRI-Based Grading of Clear Cell Renal Cell Carcinoma Using a Machine Learning Classifier
por: Chen, Xin-Yuan, et al.
Publicado: (2021) -
Recurrence prediction in clear cell renal cell carcinoma using machine learning of quantitative nuclear features
por: Matsubara, Shuya, et al.
Publicado: (2023) -
Key genes associated with prognosis and metastasis of clear cell renal cell carcinoma
por: Zhong, Tingting, et al.
Publicado: (2022) -
Identification of key genes involved in the metastasis of clear cell renal cell carcinoma
por: Wei, Wenhao, et al.
Publicado: (2019)