Cargando…

Osthole-Mediated Inhibition of Neurotoxicity Induced by Ropivacaine via Amplification of the Cyclic Adenosine Monophosphate Signaling Pathway

BACKGROUND: Ropivacaine is widely used for clinical anesthesia and postoperative analgesia. However, the neurotoxicity induced by ropivacaine in a concentration- and duration-dependent manner, and it is difficult to prevent neurotoxicity. Osthole inhibits phosphodiesterase-4 activity by binding to i...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, WeiBing, Zhou, Hui, Sun, LaiBao, Li, MeiNa, Gao, FengJiao, Sun, AiJiao, Zou, XueNong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980408/
https://www.ncbi.nlm.nih.gov/pubmed/35392264
http://dx.doi.org/10.1177/15593258221088092
Descripción
Sumario:BACKGROUND: Ropivacaine is widely used for clinical anesthesia and postoperative analgesia. However, the neurotoxicity induced by ropivacaine in a concentration- and duration-dependent manner, and it is difficult to prevent neurotoxicity. Osthole inhibits phosphodiesterase-4 activity by binding to its catalytic site to prevent cAMP hydrolysis. The aim of this present study is to explore the precise molecular mechanism of osthole-mediated inhibition of neurotoxicity induced by ropivacaine. METHODS: SH-SY5Y cell viability and apoptosis were measured in different concentration and duration. Protein concentration was determined in each signaling pathway. The molecular mechanism of osthole-mediated inhibition of ropivacaine-caused neurotoxicity was evaluated. RESULTS: The study demonstrated that osthole inhibits SH-SY5Y cells neurotoxicity in a duration- and concentration-dependent manner. Moreover, ropivacaine significantly increased the expression of caspase-3 by promoting the phosphorylation of p38. Osthole-induced upregulation of cAMP activated cAMP-dependent signaling pathway, sequentially leading to elevated cyclic nucleotide response element-binding protein levels, which inhibits P38-dependent signaling and decreases apoptosis of SH-SY5Y. CONCLUSIONS: This study display the evidence confirmed the molecular mechanism by which osthole amplification of cAMP-dependent signaling pathway, and overexpression of cyclic nucleotide response element-binding protein inhibits P38-dependent signaling and decreases ropivacaine-induced SH-SY5Y apoptosis.