Cargando…
Deep Learning-Based Complete Coverage Path Planning With Re-Joint and Obstacle Fusion Paradigm
With the introduction of autonomy into the precision agriculture process, environmental exploration, disaster response, and other fields, one of the global demands is to navigate autonomous vehicles to completely cover entire unknown environments. In the previous complete coverage path planning (CCP...
Autores principales: | Lei, Tingjun, Luo, Chaomin, Jan, Gene Eu, Bi, Zhuming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980723/ https://www.ncbi.nlm.nih.gov/pubmed/35391941 http://dx.doi.org/10.3389/frobt.2022.843816 |
Ejemplares similares
-
Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots
por: Kelasidi, Eleni, et al.
Publicado: (2019) -
Efficient Coverage Path Planning for Mobile Disinfecting Robots Using Graph-Based Representation of Environment
por: Nasirian, B., et al.
Publicado: (2021) -
Fast and optimal branch-and-bound planner for the grid-based coverage path planning problem based on an admissible heuristic function
por: Champagne Gareau, Jaël, et al.
Publicado: (2023) -
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning
por: Ewerton, Marco, et al.
Publicado: (2019) -
Editorial: AI for Robot Modeling, Path Planning, and Intelligent Control
por: Pan, Yongping, et al.
Publicado: (2020)