Cargando…

A Deep Learning System for Fully Automated Retinal Vessel Measurement in High Throughput Image Analysis

MOTIVATION: Retinal microvasculature is a unique window for predicting and monitoring major cardiovascular diseases, but high throughput tools based on deep learning for in-detail retinal vessel analysis are lacking. As such, we aim to develop and validate an artificial intelligence system (Retina-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Danli, Lin, Zhihong, Wang, Wei, Tan, Zachary, Shang, Xianwen, Zhang, Xueli, Meng, Wei, Ge, Zongyuan, He, Mingguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980780/
https://www.ncbi.nlm.nih.gov/pubmed/35391847
http://dx.doi.org/10.3389/fcvm.2022.823436
Descripción
Sumario:MOTIVATION: Retinal microvasculature is a unique window for predicting and monitoring major cardiovascular diseases, but high throughput tools based on deep learning for in-detail retinal vessel analysis are lacking. As such, we aim to develop and validate an artificial intelligence system (Retina-based Microvascular Health Assessment System, RMHAS) for fully automated vessel segmentation and quantification of the retinal microvasculature. RESULTS: RMHAS achieved good segmentation accuracy across datasets with diverse eye conditions and image resolutions, having AUCs of 0.91, 0.88, 0.95, 0.93, 0.97, 0.95, 0.94 for artery segmentation and 0.92, 0.90, 0.96, 0.95, 0.97, 0.95, 0.96 for vein segmentation on the AV-WIDE, AVRDB, HRF, IOSTAR, LES-AV, RITE, and our internal datasets. Agreement and repeatability analysis supported the robustness of the algorithm. For vessel analysis in quantity, less than 2 s were needed to complete all required analysis.