Cargando…
Cross-Attention and Deep Supervision UNet for Lesion Segmentation of Chronic Stroke
Stroke is an acute cerebrovascular disease with high incidence, high mortality, and high disability rate. Determining the location and volume of the disease in MR images promotes accurate stroke diagnosis and surgical planning. Therefore, the automatic recognition and segmentation of stroke lesions...
Autores principales: | Sheng, Manjin, Xu, Wenjie, Yang, Jane, Chen, Zhongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980944/ https://www.ncbi.nlm.nih.gov/pubmed/35392415 http://dx.doi.org/10.3389/fnins.2022.836412 |
Ejemplares similares
-
Improved UNet with Attention for Medical Image Segmentation
por: AL Qurri, Ahmed, et al.
Publicado: (2023) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022) -
Optimized-Unet: Novel Algorithm for Parapapillary Atrophy Segmentation
por: Wan, Cheng, et al.
Publicado: (2021) -
Unfolded deep kernel estimation-attention UNet-based retinal image segmentation
por: Radha, K., et al.
Publicado: (2023) -
SAA-UNet: Spatial Attention and Attention Gate UNet for COVID-19 Pneumonia Segmentation from Computed Tomography
por: Alshomrani, Shroog, et al.
Publicado: (2023)