Cargando…
Comprehensive Analysis of Clinical Logistic and Machine Learning-Based Models for the Evaluation of Pulmonary Nodules
INTRODUCTION: Over the years, multiple models have been developed for the evaluation of pulmonary nodules (PNs). This study aimed to comprehensively investigate clinical models for estimating the malignancy probability in patients with PNs. METHODS: PubMed, EMBASE, Cochrane Library, and Web of Scien...
Autores principales: | Zhang, Kai, Wei, Zihan, Nie, Yuntao, Shen, Haifeng, Wang, Xin, Wang, Jun, Yang, Fan, Chen, Kezhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980995/ https://www.ncbi.nlm.nih.gov/pubmed/35392654 http://dx.doi.org/10.1016/j.jtocrr.2022.100299 |
Ejemplares similares
-
Molecular Alterations in Lung Adenocarcinoma With Ground-Glass Nodules: A Systematic Review and Meta-Analysis
por: Wei, Zihan, et al.
Publicado: (2021) -
Comparison of Clinical and Pathological Characteristics Between Extremely Multiple GGNs and Single GGNs
por: Wang, Xin, et al.
Publicado: (2021) -
Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules
por: Tandon, Yasmeen K., et al.
Publicado: (2020) -
Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning
por: Qi, Jian, et al.
Publicado: (2021) -
Comprehensive Logistics
por: Gudehus, Timm, et al.
Publicado: (2012)