Cargando…
Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics
[Image: see text] Machine learning is increasingly applied in proteomics and metabolomics to predict molecular structure, function, and physicochemical properties, including behavior in chromatography, ion mobility, and tandem mass spectrometry. These must be described in sufficient detail to apply...
Autores principales: | Palmblad, Magnus, Böcker, Sebastian, Degroeve, Sven, Kohlbacher, Oliver, Käll, Lukas, Noble, William Stafford, Wilhelm, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981311/ https://www.ncbi.nlm.nih.gov/pubmed/35119864 http://dx.doi.org/10.1021/acs.jproteome.1c00900 |
Ejemplares similares
-
Toward an
Integrated Machine Learning Model of a Proteomics
Experiment
por: Neely, Benjamin A., et al.
Publicado: (2023) -
A cross-validation scheme for machine learning algorithms in shotgun proteomics
por: Granholm, Viktor, et al.
Publicado: (2012) -
Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics
por: Timm, Wiebke, et al.
Publicado: (2008) -
Theoretical Considerations
for Next-Generation Proteomics
por: Palmblad, Magnus
Publicado: (2021) -
qvality: non-parametric estimation of q-values and posterior error probabilities
por: Käll, Lukas, et al.
Publicado: (2009)