Cargando…

Cu(OAc)(2) catalysed aerobic oxidation of aldehydes to nitriles under ligand-free conditions

An economically efficient and environmentally benign approach for the direct oxidative transformation of aldehydes to nitriles has been developed using commercially available non-toxic copper acetate as an inexpensive catalyst and ammonium acetate as the source of nitrogen in the presence of aerial...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Asit Kumar, Nandy, Sneha, Bhar, Sanjay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981401/
https://www.ncbi.nlm.nih.gov/pubmed/35425513
http://dx.doi.org/10.1039/d1ra07701e
Descripción
Sumario:An economically efficient and environmentally benign approach for the direct oxidative transformation of aldehydes to nitriles has been developed using commercially available non-toxic copper acetate as an inexpensive catalyst and ammonium acetate as the source of nitrogen in the presence of aerial oxygen as an eco-friendly oxidant under ligand-free conditions. The reactions were associated with high yield and various sensitive moieties like allyloxy, benzyloxy, t-butyldimethylsilyloxy, hetero-aryl, formyl, keto, chloro, bromo, methylenedioxy and cyano were well tolerated in the aforesaid method. The kinetic studies showed first order dependency on the aldehyde substrate in the reaction rate. The reaction was faster with the electron deficient aldehydes as confirmed by Hammett analysis. Moreover, the present oxidative method was effective on larger scales showing potential for industrial application.