Cargando…

Under‐Oil Autonomously Regulated Oxygen Microenvironments: A Goldilocks Principle‐Based Approach for Microscale Cell Culture (Adv. Sci. 10/2022)

Autonomously Regulated Oxygen Microenvironments In article number 2104510, Chao Li, Ophelia S. Venturelli, David J. Beebe, and co‐workers introduce a Goldilocks principle‐based method, named autonomously regulated oxygen microenvironments (AROM), to recapitulate the oxygen homeostasis and kinetics s...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chao, Humayun, Mouhita, Walker, Glenn M., Park, Keon Young, Connors, Bryce, Feng, Jun, Pellitteri Hahn, Molly C., Scarlett, Cameron O., Li, Jiayi, Feng, Yanbo, Clark, Ryan L., Hefti, Hunter, Schrope, Jonathan, Venturelli, Ophelia S., Beebe, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981440/
http://dx.doi.org/10.1002/advs.202270063
Descripción
Sumario:Autonomously Regulated Oxygen Microenvironments In article number 2104510, Chao Li, Ophelia S. Venturelli, David J. Beebe, and co‐workers introduce a Goldilocks principle‐based method, named autonomously regulated oxygen microenvironments (AROM), to recapitulate the oxygen homeostasis and kinetics seen in vivo in microscale cell culture. Fundamentally different from the traditional, operator‐centered oxygen control, i.e., the operator‐defined oxygen microenvironment to which the cells are exposed passively, AROM allows cells to self‐regulate (or autonomously regulate) and respond to the oxygen microenvironment via a supply‐demand balance. [Image: see text]