Cargando…

Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles

Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemoth...

Descripción completa

Detalles Bibliográficos
Autores principales: Biancacci, Ilaria, De Lorenzi, Federica, Theek, Benjamin, Bai, Xiangyang, May, Jan‐Niklas, Consolino, Lorena, Baues, Maike, Moeckel, Diana, Gremse, Felix, von Stillfried, Saskia, El Shafei, Asmaa, Benderski, Karina, Azadkhah Shalmani, Armin, Wang, Alec, Momoh, Jeffrey, Peña, Quim, Buhl, Eva Miriam, Buyel, Johannes, Hennink, Wim, Kiessling, Fabian, Metselaar, Josbert, Shi, Yang, Lammers, Twan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981450/
https://www.ncbi.nlm.nih.gov/pubmed/35072358
http://dx.doi.org/10.1002/advs.202103745
_version_ 1784681607237468160
author Biancacci, Ilaria
De Lorenzi, Federica
Theek, Benjamin
Bai, Xiangyang
May, Jan‐Niklas
Consolino, Lorena
Baues, Maike
Moeckel, Diana
Gremse, Felix
von Stillfried, Saskia
El Shafei, Asmaa
Benderski, Karina
Azadkhah Shalmani, Armin
Wang, Alec
Momoh, Jeffrey
Peña, Quim
Buhl, Eva Miriam
Buyel, Johannes
Hennink, Wim
Kiessling, Fabian
Metselaar, Josbert
Shi, Yang
Lammers, Twan
author_facet Biancacci, Ilaria
De Lorenzi, Federica
Theek, Benjamin
Bai, Xiangyang
May, Jan‐Niklas
Consolino, Lorena
Baues, Maike
Moeckel, Diana
Gremse, Felix
von Stillfried, Saskia
El Shafei, Asmaa
Benderski, Karina
Azadkhah Shalmani, Armin
Wang, Alec
Momoh, Jeffrey
Peña, Quim
Buhl, Eva Miriam
Buyel, Johannes
Hennink, Wim
Kiessling, Fabian
Metselaar, Josbert
Shi, Yang
Lammers, Twan
author_sort Biancacci, Ilaria
collection PubMed
description Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single‐ and double‐dose nanotherapy with fluorophore‐labeled and paclitaxel‐loaded polymeric micelles. Using computed tomography‐fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR‐based tumor accumulation significantly increases during treatment, especially for more efficient double‐dose nanotaxane therapy. Furthermore, for double‐dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g(–1)) upon the first administration to 15% ID g(–1) upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation.
format Online
Article
Text
id pubmed-8981450
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-89814502022-04-11 Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles Biancacci, Ilaria De Lorenzi, Federica Theek, Benjamin Bai, Xiangyang May, Jan‐Niklas Consolino, Lorena Baues, Maike Moeckel, Diana Gremse, Felix von Stillfried, Saskia El Shafei, Asmaa Benderski, Karina Azadkhah Shalmani, Armin Wang, Alec Momoh, Jeffrey Peña, Quim Buhl, Eva Miriam Buyel, Johannes Hennink, Wim Kiessling, Fabian Metselaar, Josbert Shi, Yang Lammers, Twan Adv Sci (Weinh) Research Articles Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single‐ and double‐dose nanotherapy with fluorophore‐labeled and paclitaxel‐loaded polymeric micelles. Using computed tomography‐fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR‐based tumor accumulation significantly increases during treatment, especially for more efficient double‐dose nanotaxane therapy. Furthermore, for double‐dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g(–1)) upon the first administration to 15% ID g(–1) upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation. John Wiley and Sons Inc. 2022-01-24 /pmc/articles/PMC8981450/ /pubmed/35072358 http://dx.doi.org/10.1002/advs.202103745 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Biancacci, Ilaria
De Lorenzi, Federica
Theek, Benjamin
Bai, Xiangyang
May, Jan‐Niklas
Consolino, Lorena
Baues, Maike
Moeckel, Diana
Gremse, Felix
von Stillfried, Saskia
El Shafei, Asmaa
Benderski, Karina
Azadkhah Shalmani, Armin
Wang, Alec
Momoh, Jeffrey
Peña, Quim
Buhl, Eva Miriam
Buyel, Johannes
Hennink, Wim
Kiessling, Fabian
Metselaar, Josbert
Shi, Yang
Lammers, Twan
Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles
title Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles
title_full Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles
title_fullStr Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles
title_full_unstemmed Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles
title_short Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles
title_sort monitoring epr effect dynamics during nanotaxane treatment with theranostic polymeric micelles
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981450/
https://www.ncbi.nlm.nih.gov/pubmed/35072358
http://dx.doi.org/10.1002/advs.202103745
work_keys_str_mv AT biancacciilaria monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT delorenzifederica monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT theekbenjamin monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT baixiangyang monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT mayjanniklas monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT consolinolorena monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT bauesmaike monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT moeckeldiana monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT gremsefelix monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT vonstillfriedsaskia monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT elshafeiasmaa monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT benderskikarina monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT azadkhahshalmaniarmin monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT wangalec monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT momohjeffrey monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT penaquim monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT buhlevamiriam monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT buyeljohannes monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT henninkwim monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT kiesslingfabian monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT metselaarjosbert monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT shiyang monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles
AT lammerstwan monitoringepreffectdynamicsduringnanotaxanetreatmentwiththeranosticpolymericmicelles