Cargando…
Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review
Through the developments of Omics technologies and dissemination of large-scale datasets, such as those from The Cancer Genome Atlas, Alzheimer’s Disease Neuroimaging Initiative, and Genotype-Tissue Expression, it is becoming increasingly possible to study complex biological processes and disease me...
Autores principales: | Vahabi, Nasim, Michailidis, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981526/ https://www.ncbi.nlm.nih.gov/pubmed/35391796 http://dx.doi.org/10.3389/fgene.2022.854752 |
Ejemplares similares
-
Cox-sMBPLS: An Algorithm for Disease Survival Prediction and Multi-Omics Module Discovery Incorporating Cis-Regulatory Quantitative Effects
por: Vahabi, Nasim, et al.
Publicado: (2021) -
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
por: Huang, Sijia, et al.
Publicado: (2017) -
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
por: Argelaguet, Ricard, et al.
Publicado: (2018) -
A Review of Integrative Imputation for Multi-Omics Datasets
por: Song, Meng, et al.
Publicado: (2020) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022)