Cargando…
Clinical implementation of RNA sequencing for Mendelian disease diagnostics
BACKGROUND: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981716/ https://www.ncbi.nlm.nih.gov/pubmed/35379322 http://dx.doi.org/10.1186/s13073-022-01019-9 |
_version_ | 1784681660370911232 |
---|---|
author | Yépez, Vicente A. Gusic, Mirjana Kopajtich, Robert Mertes, Christian Smith, Nicholas H. Alston, Charlotte L. Ban, Rui Beblo, Skadi Berutti, Riccardo Blessing, Holger Ciara, Elżbieta Distelmaier, Felix Freisinger, Peter Häberle, Johannes Hayflick, Susan J. Hempel, Maja Itkis, Yulia S. Kishita, Yoshihito Klopstock, Thomas Krylova, Tatiana D. Lamperti, Costanza Lenz, Dominic Makowski, Christine Mosegaard, Signe Müller, Michaela F. Muñoz-Pujol, Gerard Nadel, Agnieszka Ohtake, Akira Okazaki, Yasushi Procopio, Elena Schwarzmayr, Thomas Smet, Joél Staufner, Christian Stenton, Sarah L. Strom, Tim M. Terrile, Caterina Tort, Frederic Van Coster, Rudy Vanlander, Arnaud Wagner, Matias Xu, Manting Fang, Fang Ghezzi, Daniele Mayr, Johannes A. Piekutowska-Abramczuk, Dorota Ribes, Antonia Rötig, Agnès Taylor, Robert W. Wortmann, Saskia B. Murayama, Kei Meitinger, Thomas Gagneur, Julien Prokisch, Holger |
author_facet | Yépez, Vicente A. Gusic, Mirjana Kopajtich, Robert Mertes, Christian Smith, Nicholas H. Alston, Charlotte L. Ban, Rui Beblo, Skadi Berutti, Riccardo Blessing, Holger Ciara, Elżbieta Distelmaier, Felix Freisinger, Peter Häberle, Johannes Hayflick, Susan J. Hempel, Maja Itkis, Yulia S. Kishita, Yoshihito Klopstock, Thomas Krylova, Tatiana D. Lamperti, Costanza Lenz, Dominic Makowski, Christine Mosegaard, Signe Müller, Michaela F. Muñoz-Pujol, Gerard Nadel, Agnieszka Ohtake, Akira Okazaki, Yasushi Procopio, Elena Schwarzmayr, Thomas Smet, Joél Staufner, Christian Stenton, Sarah L. Strom, Tim M. Terrile, Caterina Tort, Frederic Van Coster, Rudy Vanlander, Arnaud Wagner, Matias Xu, Manting Fang, Fang Ghezzi, Daniele Mayr, Johannes A. Piekutowska-Abramczuk, Dorota Ribes, Antonia Rötig, Agnès Taylor, Robert W. Wortmann, Saskia B. Murayama, Kei Meitinger, Thomas Gagneur, Julien Prokisch, Holger |
author_sort | Yépez, Vicente A. |
collection | PubMed |
description | BACKGROUND: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS: We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS: We detected on average 12,500 genes per sample including around 60% of all disease genes—a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION: Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01019-9. |
format | Online Article Text |
id | pubmed-8981716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-89817162022-04-06 Clinical implementation of RNA sequencing for Mendelian disease diagnostics Yépez, Vicente A. Gusic, Mirjana Kopajtich, Robert Mertes, Christian Smith, Nicholas H. Alston, Charlotte L. Ban, Rui Beblo, Skadi Berutti, Riccardo Blessing, Holger Ciara, Elżbieta Distelmaier, Felix Freisinger, Peter Häberle, Johannes Hayflick, Susan J. Hempel, Maja Itkis, Yulia S. Kishita, Yoshihito Klopstock, Thomas Krylova, Tatiana D. Lamperti, Costanza Lenz, Dominic Makowski, Christine Mosegaard, Signe Müller, Michaela F. Muñoz-Pujol, Gerard Nadel, Agnieszka Ohtake, Akira Okazaki, Yasushi Procopio, Elena Schwarzmayr, Thomas Smet, Joél Staufner, Christian Stenton, Sarah L. Strom, Tim M. Terrile, Caterina Tort, Frederic Van Coster, Rudy Vanlander, Arnaud Wagner, Matias Xu, Manting Fang, Fang Ghezzi, Daniele Mayr, Johannes A. Piekutowska-Abramczuk, Dorota Ribes, Antonia Rötig, Agnès Taylor, Robert W. Wortmann, Saskia B. Murayama, Kei Meitinger, Thomas Gagneur, Julien Prokisch, Holger Genome Med Research BACKGROUND: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS: We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS: We detected on average 12,500 genes per sample including around 60% of all disease genes—a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION: Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01019-9. BioMed Central 2022-04-05 /pmc/articles/PMC8981716/ /pubmed/35379322 http://dx.doi.org/10.1186/s13073-022-01019-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Yépez, Vicente A. Gusic, Mirjana Kopajtich, Robert Mertes, Christian Smith, Nicholas H. Alston, Charlotte L. Ban, Rui Beblo, Skadi Berutti, Riccardo Blessing, Holger Ciara, Elżbieta Distelmaier, Felix Freisinger, Peter Häberle, Johannes Hayflick, Susan J. Hempel, Maja Itkis, Yulia S. Kishita, Yoshihito Klopstock, Thomas Krylova, Tatiana D. Lamperti, Costanza Lenz, Dominic Makowski, Christine Mosegaard, Signe Müller, Michaela F. Muñoz-Pujol, Gerard Nadel, Agnieszka Ohtake, Akira Okazaki, Yasushi Procopio, Elena Schwarzmayr, Thomas Smet, Joél Staufner, Christian Stenton, Sarah L. Strom, Tim M. Terrile, Caterina Tort, Frederic Van Coster, Rudy Vanlander, Arnaud Wagner, Matias Xu, Manting Fang, Fang Ghezzi, Daniele Mayr, Johannes A. Piekutowska-Abramczuk, Dorota Ribes, Antonia Rötig, Agnès Taylor, Robert W. Wortmann, Saskia B. Murayama, Kei Meitinger, Thomas Gagneur, Julien Prokisch, Holger Clinical implementation of RNA sequencing for Mendelian disease diagnostics |
title | Clinical implementation of RNA sequencing for Mendelian disease diagnostics |
title_full | Clinical implementation of RNA sequencing for Mendelian disease diagnostics |
title_fullStr | Clinical implementation of RNA sequencing for Mendelian disease diagnostics |
title_full_unstemmed | Clinical implementation of RNA sequencing for Mendelian disease diagnostics |
title_short | Clinical implementation of RNA sequencing for Mendelian disease diagnostics |
title_sort | clinical implementation of rna sequencing for mendelian disease diagnostics |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981716/ https://www.ncbi.nlm.nih.gov/pubmed/35379322 http://dx.doi.org/10.1186/s13073-022-01019-9 |
work_keys_str_mv | AT yepezvicentea clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT gusicmirjana clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT kopajtichrobert clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT merteschristian clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT smithnicholash clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT alstoncharlottel clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT banrui clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT bebloskadi clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT beruttiriccardo clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT blessingholger clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT ciaraelzbieta clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT distelmaierfelix clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT freisingerpeter clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT haberlejohannes clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT hayflicksusanj clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT hempelmaja clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT itkisyulias clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT kishitayoshihito clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT klopstockthomas clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT krylovatatianad clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT lamperticostanza clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT lenzdominic clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT makowskichristine clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT mosegaardsigne clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT mullermichaelaf clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT munozpujolgerard clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT nadelagnieszka clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT ohtakeakira clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT okazakiyasushi clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT procopioelena clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT schwarzmayrthomas clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT smetjoel clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT staufnerchristian clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT stentonsarahl clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT stromtimm clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT terrilecaterina clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT tortfrederic clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT vancosterrudy clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT vanlanderarnaud clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT wagnermatias clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT xumanting clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT fangfang clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT ghezzidaniele clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT mayrjohannesa clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT piekutowskaabramczukdorota clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT ribesantonia clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT rotigagnes clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT taylorrobertw clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT wortmannsaskiab clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT murayamakei clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT meitingerthomas clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT gagneurjulien clinicalimplementationofrnasequencingformendeliandiseasediagnostics AT prokischholger clinicalimplementationofrnasequencingformendeliandiseasediagnostics |