Cargando…
Ionically Conductive Tunnels in h‐WO(3) Enable High‐Rate NH(4) (+) Storage
Compared to the commonly applied metallic ion charge carriers (e.g., Li(+) and Na(+)), batteries using nonmetallic charge carriers (e.g., H(+) and NH(4) (+)) generally have much faster kinetics and high‐rate capability thanks to the small hydrated ionic sizes and nondiffusion control topochemistry....
Autores principales: | Zhang, Yi‐Zhou, Liang, Jin, Huang, Zihao, Wang, Qian, Zhu, Guoyin, Dong, Shengyang, Liang, Hanfeng, Dong, Xiaochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981906/ https://www.ncbi.nlm.nih.gov/pubmed/35107225 http://dx.doi.org/10.1002/advs.202105158 |
Ejemplares similares
-
Nanostructure-induced performance degradation of WO(3)·nH(2)O for energy conversion and storage devices
por: Hai, Zhenyin, et al.
Publicado: (2018) -
TiO(2)–SiO(2) supported MnWO(x) catalysts by liquid-phase deposition for low-temperature NH(3)-SCR
por: Lu, Weizhe, et al.
Publicado: (2019) -
Mixed Ionic–Electronic
Conduction Increases
the Rate Capability of Polynaphthalenediimide for Energy Storage
por: Li, Yilin, et al.
Publicado: (2023) -
Atom tunnelling in the reaction NH(3)
(+) + H(2) → NH(4)
(+) + H and its astrochemical relevance
por: Álvarez-Barcia, Sonia, et al.
Publicado: (2016) -
Nano- and micro-structural control of WO(3) photoelectrode films through aqueous synthesis of WO(3)·H(2)O and (NH(4))(0.33)WO(3) precursors
por: Uchiyama, Hiroaki, et al.
Publicado: (2020)