Cargando…
A Hybrid PAC Reinforcement Learning Algorithm for Human-Robot Interaction
This paper offers a new hybrid probably approximately correct (PAC) reinforcement learning (RL) algorithm for Markov decision processes (MDPs) that intelligently maintains favorable features of both model-based and model-free methodologies. The designed algorithm, referred to as the Dyna-Delayed Q-l...
Autores principales: | Zehfroosh, Ashkan, Tanner , Herbert G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982074/ https://www.ncbi.nlm.nih.gov/pubmed/35391942 http://dx.doi.org/10.3389/frobt.2022.797213 |
Ejemplares similares
-
Non-Smooth Control Barrier Navigation Functions for STL Motion Planning
por: Zehfroosh, Ashkan, et al.
Publicado: (2022) -
Statistical Relational Learning With Unconventional String Models
por: Vu, Mai H., et al.
Publicado: (2018) -
Koopman Operator–Based Knowledge-Guided Reinforcement Learning for Safe Human–Robot Interaction
por: Sinha, Anirban, et al.
Publicado: (2022) -
Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes
por: Akkaladevi, Sharath Chandra, et al.
Publicado: (2018) -
Towards Robot-Assisted Therapy for Children With Autism—The Ontological Knowledge Models and Reinforcement Learning-Based Algorithms
por: Salhi, Intissar, et al.
Publicado: (2022)