Cargando…
EdgeCrafting: mining embedded, latent, nonlinear patterns to construct gene relationship networks
The mechanisms that coordinate cellular gene expression are highly complex and intricately interconnected. Thus, it is necessary to move beyond a fully reductionist approach to understanding genetic information flow and begin focusing on the networked connections between genes that organize cellular...
Autores principales: | Husain, Benafsh, Reed Bender, Matthew, Alex Feltus, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982412/ https://www.ncbi.nlm.nih.gov/pubmed/35176152 http://dx.doi.org/10.1093/g3journal/jkac042 |
Ejemplares similares
-
EdgeScaping: Mapping the spatial distribution of pairwise gene expression intensities
por: Husain, Benafsh, et al.
Publicado: (2019) -
Cellular State Transformations Using Deep Learning for Precision Medicine Applications
por: Targonski, Colin, et al.
Publicado: (2020) -
NetExtractor: Extracting a Cerebellar Tissue Gene Regulatory Network Using Differentially Expressed High Mutual Information Binary RNA Profiles
por: Husain, Benafsh, et al.
Publicado: (2020) -
Discovery of eQTL Alleles Associated with Autism Spectrum Disorder: A Case–Control Study
por: Hickman, Allison R., et al.
Publicado: (2022) -
Exploration into biomarker potential of region-specific brain gene co-expression networks
por: Hang, Yuqing, et al.
Publicado: (2020)