Cargando…
Challenges and Opportunities for Bayesian Statistics in Proteomics
[Image: see text] Proteomics is a data-rich science with complex experimental designs and an intricate measurement process. To obtain insights from the large data sets produced, statistical methods, including machine learning, are routinely applied. For a quantity of interest, many of these approach...
Autores principales: | Crook, Oliver M., Chung, Chun-wa, Deane, Charlotte M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982455/ https://www.ncbi.nlm.nih.gov/pubmed/35258980 http://dx.doi.org/10.1021/acs.jproteome.1c00859 |
Ejemplares similares
-
A Functional
Bayesian Model for Hydrogen–Deuterium
Exchange Mass Spectrometry
por: Crook, Oliver M., et al.
Publicado: (2023) -
Empirical Bayes functional models for hydrogen deuterium exchange mass spectrometry
por: Crook, Oliver M., et al.
Publicado: (2022) -
Being Bayesian in the 2020s: opportunities and challenges in the practice of modern applied Bayesian statistics
por: Bon, Joshua J., et al.
Publicado: (2023) -
A Bioconductor workflow for the Bayesian analysis of spatial proteomics
por: Crook, Oliver M., et al.
Publicado: (2019) -
A Bayesian mixture modelling approach for spatial proteomics
por: Crook, Oliver M., et al.
Publicado: (2018)