Cargando…
Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach
With the relaxation of the containment measurements around the globe, monitoring the social distancing in crowded public spaces is of great importance to prevent a new massive wave of COVID-19 infections. Recent works in that matter have limited themselves by assessing social distancing in corridors...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982666/ https://www.ncbi.nlm.nih.gov/pubmed/35400844 http://dx.doi.org/10.1007/s10489-022-03172-5 |
_version_ | 1784681852291776512 |
---|---|
author | Gonzalez-Trejo, Javier Antonio Mercado-Ravell, Diego A. Jaramillo-Avila, Uziel |
author_facet | Gonzalez-Trejo, Javier Antonio Mercado-Ravell, Diego A. Jaramillo-Avila, Uziel |
author_sort | Gonzalez-Trejo, Javier Antonio |
collection | PubMed |
description | With the relaxation of the containment measurements around the globe, monitoring the social distancing in crowded public spaces is of great importance to prevent a new massive wave of COVID-19 infections. Recent works in that matter have limited themselves by assessing social distancing in corridors up to small crowds by detecting each person individually, considering the full body in the image. In this work, we propose a new framework for monitoring the social-distance using end-to-end Deep Learning, to detect crowds violating social-distancing in wide areas, where important occlusions may be present. Our framework consists in the creation of new ground truth social distance labels, based on the ground truth density maps, and the proposal of two different solutions, a density-map-based and a segmentation-based, to detect crowds violating social-distancing constraints. We assess the results of both approaches by using the generated ground truth from the PET2009 and CityStreet datasets. We show that our framework performs well at providing the zones where people are not following the social-distance, even when heavily occluded or far away from the camera, compared to current detection and tracking approaches. |
format | Online Article Text |
id | pubmed-8982666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-89826662022-04-06 Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach Gonzalez-Trejo, Javier Antonio Mercado-Ravell, Diego A. Jaramillo-Avila, Uziel Appl Intell (Dordr) Article With the relaxation of the containment measurements around the globe, monitoring the social distancing in crowded public spaces is of great importance to prevent a new massive wave of COVID-19 infections. Recent works in that matter have limited themselves by assessing social distancing in corridors up to small crowds by detecting each person individually, considering the full body in the image. In this work, we propose a new framework for monitoring the social-distance using end-to-end Deep Learning, to detect crowds violating social-distancing in wide areas, where important occlusions may be present. Our framework consists in the creation of new ground truth social distance labels, based on the ground truth density maps, and the proposal of two different solutions, a density-map-based and a segmentation-based, to detect crowds violating social-distancing constraints. We assess the results of both approaches by using the generated ground truth from the PET2009 and CityStreet datasets. We show that our framework performs well at providing the zones where people are not following the social-distance, even when heavily occluded or far away from the camera, compared to current detection and tracking approaches. Springer US 2022-04-05 2022 /pmc/articles/PMC8982666/ /pubmed/35400844 http://dx.doi.org/10.1007/s10489-022-03172-5 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Gonzalez-Trejo, Javier Antonio Mercado-Ravell, Diego A. Jaramillo-Avila, Uziel Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach |
title | Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach |
title_full | Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach |
title_fullStr | Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach |
title_full_unstemmed | Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach |
title_short | Monitoring social-distance in wide areas during pandemics: a density map and segmentation approach |
title_sort | monitoring social-distance in wide areas during pandemics: a density map and segmentation approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982666/ https://www.ncbi.nlm.nih.gov/pubmed/35400844 http://dx.doi.org/10.1007/s10489-022-03172-5 |
work_keys_str_mv | AT gonzaleztrejojavierantonio monitoringsocialdistanceinwideareasduringpandemicsadensitymapandsegmentationapproach AT mercadoravelldiegoa monitoringsocialdistanceinwideareasduringpandemicsadensitymapandsegmentationapproach AT jaramilloavilauziel monitoringsocialdistanceinwideareasduringpandemicsadensitymapandsegmentationapproach |