Cargando…
Dilated Recurrent Neural Networks for Glucose Forecasting in Type 1 Diabetes
Diabetes is a chronic disease affecting 415 million people worldwide. People with type 1 diabetes mellitus (T1DM) need to self-administer insulin to maintain blood glucose (BG) levels in a normal range, which is usually a very challenging task. Developing a reliable glucose forecasting model would h...
Autores principales: | Zhu, Taiyu, Li, Kezhi, Chen, Jianwei, Herrero, Pau, Georgiou, Pantelis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982716/ https://www.ncbi.nlm.nih.gov/pubmed/35415447 http://dx.doi.org/10.1007/s41666-020-00068-2 |
Ejemplares similares
-
An Insulin Bolus Advisor for Type 1 Diabetes Using Deep Reinforcement Learning
por: Zhu, Taiyu, et al.
Publicado: (2020) -
Enhancing self-management in type 1 diabetes with wearables and deep learning
por: Zhu, Taiyu, et al.
Publicado: (2022) -
Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal
por: Liu, Chengyuan, et al.
Publicado: (2019) -
Modeling the effect of the cephalic phase of insulin secretion on glucose metabolism
por: Güemes, Amparo, et al.
Publicado: (2019) -
Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes—An In Silico Proof-of-Concept
por: Cappon, Giacomo, et al.
Publicado: (2019)