Cargando…
Blood Glucose Prediction with Variance Estimation Using Recurrent Neural Networks
Many factors affect blood glucose levels in type 1 diabetics, several of which vary largely both in magnitude and delay of the effect. Modern rapid-acting insulins generally have a peak time after 60–90 min, while carbohydrate intake can affect blood glucose levels more rapidly for high glycemic ind...
Autores principales: | Martinsson, John, Schliep, Alexander, Eliasson, Björn, Mogren, Olof |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982803/ https://www.ncbi.nlm.nih.gov/pubmed/35415439 http://dx.doi.org/10.1007/s41666-019-00059-y |
Ejemplares similares
-
Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network
por: Kwon, Hye-Mee, et al.
Publicado: (2021) -
Explainable Brain Age Prediction using coVariance Neural Networks
por: Sihag, Saurabh, et al.
Publicado: (2023) -
Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction
por: Rabby, Md Fazle, et al.
Publicado: (2021) -
Developing an Individual Glucose Prediction Model Using Recurrent Neural Network
por: Kim, Dae-Yeon, et al.
Publicado: (2020) -
Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance
por: Hickey, John M, et al.
Publicado: (2009)