Cargando…
Base-resolution prediction of transcription factor binding signals by a deep learning framework
Transcription factors (TFs) play an important role in regulating gene expression, thus the identification of the sites bound by them has become a fundamental step for molecular and cellular biology. In this paper, we developed a deep learning framework leveraging existing fully convolutional neural...
Autores principales: | Zhang, Qinhu, He, Ying, Wang, Siguo, Chen, Zhanheng, Guo, Zhenhao, Cui, Zhen, Liu, Qi, Huang, De-Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982852/ https://www.ncbi.nlm.nih.gov/pubmed/35263332 http://dx.doi.org/10.1371/journal.pcbi.1009941 |
Ejemplares similares
-
Locating transcription factor binding sites by fully convolutional neural network
por: Zhang, Qinhu, et al.
Publicado: (2021) -
Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture
por: Wang, Siguo, et al.
Publicado: (2021) -
A survey on deep learning in DNA/RNA motif mining
por: He, Ying, et al.
Publicado: (2020) -
DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes
por: Wang, Siguo, et al.
Publicado: (2022) -
Computational prediction and characterization of cell-type-specific and shared binding sites
por: Zhang, Qinhu, et al.
Publicado: (2022)