Cargando…
Predicting COVID‐19 Cases From Atmospheric Parameters Using Machine Learning Approach
The dynamical nature of COVID‐19 cases in different parts of the world requires robust mathematical approaches for prediction and forecasting. In this study, we aim to (a) forecast future COVID‐19 cases based on past infections, (b) predict current COVID‐19 cases using PM2.5, temperature, and humidi...
Autores principales: | Ogunjo, S. T., Fuwape, I. A., Rabiu, A. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983058/ https://www.ncbi.nlm.nih.gov/pubmed/35415381 http://dx.doi.org/10.1029/2021GH000509 |
Ejemplares similares
-
Impact of COVID -19 pandemic lockdown on distribution of inorganic pollutants in selected cities of Nigeria
por: Fuwape, I. A., et al.
Publicado: (2020) -
The Impact of the First and Second Waves of COVID‐19 Pandemic in Nigeria
por: Joshua, Benjamin Wisdom, et al.
Publicado: (2023) -
Association Between Weather Parameters and SARS‐CoV‐2 Confirmed Cases in Two South African Cities
por: Ogunjo, Samuel, et al.
Publicado: (2022) -
Prediction of COVID-19 growth and trend using machine learning approach
por: Gothai, E., et al.
Publicado: (2023) -
Machine Learning Approach for Prediction of Hematic Parameters in Hemodialysis Patients
Publicado: (2019)