Cargando…

METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification

We aimed to investigate the bio-functions of METTL3 in promoting breast cancer (BCa) progression via regulating N6-methyladenosine (m(6)A) modification of EZH2 mRNA. METTL3 levels in 48 cases of BCa and matched paracancerous tissues were detected. In the meantime, METTL3 in BCa patients with differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Shaojun, Song, Yang, Zhou, Yu, Jiao, Yu, Li, Guopeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983232/
https://www.ncbi.nlm.nih.gov/pubmed/35392146
http://dx.doi.org/10.1155/2022/5794422
_version_ 1784681940548321280
author Hu, Shaojun
Song, Yang
Zhou, Yu
Jiao, Yu
Li, Guopeng
author_facet Hu, Shaojun
Song, Yang
Zhou, Yu
Jiao, Yu
Li, Guopeng
author_sort Hu, Shaojun
collection PubMed
description We aimed to investigate the bio-functions of METTL3 in promoting breast cancer (BCa) progression via regulating N6-methyladenosine (m(6)A) modification of EZH2 mRNA. METTL3 levels in 48 cases of BCa and matched paracancerous tissues were detected. In the meantime, METTL3 in BCa patients with different staging or lymphatic metastasis states were examined. Prognosis of the BCa patients was analyzed using Kaplan–Meier estimator. Protein levels of EMT-associated genes and invasive and migratory abilities were evaluated. The binding relationship between EZH2 and METTL3 was analyzed via RIP. Besides, m(6)A modification of EZH2 mRNA was explored. E-Cadherin level in MCF-7 cells with EZH2 knockdown was tested. Subsequently, ChIP was done to verify the interaction between E-cadherin and EZH2. Regulatory effects of METTL3/E-cadherin axis on EMT and metastasis of BCa were finally determined. METTL3 was upregulated in BCa tissues compared to paracancerous ones. METTL3 was especially higher in T3-T4 BCa or those with lymphatic metastasis. BCa patients expressing high level of METTL3 experienced worse survival. METTL3 was identically upregulated in BCa cell lines. Knockdown of METTL3 in MCF-7 cells attenuated EMT and metastatic abilities. Protein level of EZH2 was downregulated after knockdown of METTL3 in MCF-7 cells, while its mRNA level was not influenced by METTL3. Furthermore, METTL3 was confirmed to interact with EZH2, and m(6)A modification existed in EZH2 mRNA. Knockdown of EZH2 greatly upregulated mRNA level of E-cadherin, and later, ChIP assay confirmed the interaction between EZH2 and E-cadherin. E-Cadherin could abolish the effects of METTL3 on BCa metastasis and epithelial-mesenchymal transition. METTL3 is upregulated in BCa. It could regulate the protein level of EZH2 through m(6)A modification to promote EMT and metastasis in BCa cells, thereafter aggravating the progression of BCa.
format Online
Article
Text
id pubmed-8983232
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-89832322022-04-06 METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification Hu, Shaojun Song, Yang Zhou, Yu Jiao, Yu Li, Guopeng J Healthc Eng Research Article We aimed to investigate the bio-functions of METTL3 in promoting breast cancer (BCa) progression via regulating N6-methyladenosine (m(6)A) modification of EZH2 mRNA. METTL3 levels in 48 cases of BCa and matched paracancerous tissues were detected. In the meantime, METTL3 in BCa patients with different staging or lymphatic metastasis states were examined. Prognosis of the BCa patients was analyzed using Kaplan–Meier estimator. Protein levels of EMT-associated genes and invasive and migratory abilities were evaluated. The binding relationship between EZH2 and METTL3 was analyzed via RIP. Besides, m(6)A modification of EZH2 mRNA was explored. E-Cadherin level in MCF-7 cells with EZH2 knockdown was tested. Subsequently, ChIP was done to verify the interaction between E-cadherin and EZH2. Regulatory effects of METTL3/E-cadherin axis on EMT and metastasis of BCa were finally determined. METTL3 was upregulated in BCa tissues compared to paracancerous ones. METTL3 was especially higher in T3-T4 BCa or those with lymphatic metastasis. BCa patients expressing high level of METTL3 experienced worse survival. METTL3 was identically upregulated in BCa cell lines. Knockdown of METTL3 in MCF-7 cells attenuated EMT and metastatic abilities. Protein level of EZH2 was downregulated after knockdown of METTL3 in MCF-7 cells, while its mRNA level was not influenced by METTL3. Furthermore, METTL3 was confirmed to interact with EZH2, and m(6)A modification existed in EZH2 mRNA. Knockdown of EZH2 greatly upregulated mRNA level of E-cadherin, and later, ChIP assay confirmed the interaction between EZH2 and E-cadherin. E-Cadherin could abolish the effects of METTL3 on BCa metastasis and epithelial-mesenchymal transition. METTL3 is upregulated in BCa. It could regulate the protein level of EZH2 through m(6)A modification to promote EMT and metastasis in BCa cells, thereafter aggravating the progression of BCa. Hindawi 2022-03-29 /pmc/articles/PMC8983232/ /pubmed/35392146 http://dx.doi.org/10.1155/2022/5794422 Text en Copyright © 2022 Shaojun Hu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Hu, Shaojun
Song, Yang
Zhou, Yu
Jiao, Yu
Li, Guopeng
METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification
title METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification
title_full METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification
title_fullStr METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification
title_full_unstemmed METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification
title_short METTL3 Accelerates Breast Cancer Progression via Regulating EZH2 m(6)A Modification
title_sort mettl3 accelerates breast cancer progression via regulating ezh2 m(6)a modification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983232/
https://www.ncbi.nlm.nih.gov/pubmed/35392146
http://dx.doi.org/10.1155/2022/5794422
work_keys_str_mv AT hushaojun mettl3acceleratesbreastcancerprogressionviaregulatingezh2m6amodification
AT songyang mettl3acceleratesbreastcancerprogressionviaregulatingezh2m6amodification
AT zhouyu mettl3acceleratesbreastcancerprogressionviaregulatingezh2m6amodification
AT jiaoyu mettl3acceleratesbreastcancerprogressionviaregulatingezh2m6amodification
AT liguopeng mettl3acceleratesbreastcancerprogressionviaregulatingezh2m6amodification