Cargando…
Using graph convolutional network to characterize individuals with major depressive disorder across multiple imaging sites
BACKGROUND: Establishing objective and quantitative neuroimaging biomarkers at individual level can assist in early and accurate diagnosis of major depressive disorder (MDD). However, most previous studies using machine learning to identify MDD were based on small sample size and did not account for...
Autores principales: | Qin, Kun, Lei, Du, Pinaya, Walter H.L., Pan, Nanfang, Li, Wenbin, Zhu, Ziyu, Sweeney, John A., Mechelli, Andrea, Gong, Qiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983334/ https://www.ncbi.nlm.nih.gov/pubmed/35367775 http://dx.doi.org/10.1016/j.ebiom.2022.103977 |
Ejemplares similares
-
Graph Convolutional Networks Reveal Network-Level Functional Dysconnectivity in Schizophrenia
por: Lei, Du, et al.
Publicado: (2022) -
Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level
por: Zhu, Ziyu, et al.
Publicado: (2021) -
Detecting schizophrenia at the level of the individual: relative diagnostic value of whole-brain images, connectome-wide functional connectivity and graph-based metrics
por: Lei, Du, et al.
Publicado: (2020) -
Using deep learning to classify pediatric posttraumatic stress disorder at the individual level
por: Yang, Jing, et al.
Publicado: (2021) -
Magnetization transfer imaging alterations and its diagnostic value in antipsychotic-naïve first-episode schizophrenia
por: Lei, Du, et al.
Publicado: (2022)