Cargando…
Proteomic profiling of postmortem prefrontal cortex tissue of suicide completers
Suicide is a leading cause of death worldwide, presenting a serious public health problem. We aimed to investigate the biological basis of suicide completion using proteomics on postmortem brain tissue. Thirty-six postmortem brain samples (23 suicide completers and 13 controls) were collected. We ev...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983647/ https://www.ncbi.nlm.nih.gov/pubmed/35383147 http://dx.doi.org/10.1038/s41398-022-01896-z |
Sumario: | Suicide is a leading cause of death worldwide, presenting a serious public health problem. We aimed to investigate the biological basis of suicide completion using proteomics on postmortem brain tissue. Thirty-six postmortem brain samples (23 suicide completers and 13 controls) were collected. We evaluated the proteomic profile in the prefrontal cortex (Broadmann area 9, 10) using tandem mass tag-based quantification with liquid chromatography–tandem mass spectrometry. Bioinformatics tools were used to elucidate the biological mechanisms related to suicide. Subgroup analysis was conducted to identify common differentially expressed proteins among clinically different groups. Of 9801 proteins identified, 295 were differentially expressed between groups. Suicide completion samples were mostly enriched in the endocannabinoid and apoptotic pathways (CAPNS1, CSNK2B, PTP4A2). Among the differentially expressed proteins, GSTT1 was identified as a potential biomarker among suicide completers with psychiatric disorders. Our findings suggest that the previously under-recognized endocannabinoid system and apoptotic processes are highly involved in suicide. |
---|