Cargando…
Evaluating the adverse outcome of subtypes of heart failure with preserved ejection fraction defined by machine learning: A systematic review focused on defining high risk phenogroups
The ability to distinguish clinically meaningful subtypes of heart failure with preserved ejection fraction (HFpEF) has recently been examined by machine learning techniques but studies appear to have produced discordant results. The objective of this study is to synthesize the types of HFpEF by exa...
Autor principal: | Rabkin, Simon W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983850/ https://www.ncbi.nlm.nih.gov/pubmed/35391918 http://dx.doi.org/10.17179/excli2021-4572 |
Ejemplares similares
-
Heart failure with preserved ejection fraction phenogroup classification using machine learning
por: Kyodo, Atsushi, et al.
Publicado: (2023) -
Comparison of Unsupervised Machine Learning Approaches for Cluster Analysis to Define Subgroups of Heart Failure with Preserved Ejection Fraction with Different Outcomes
por: Nouraei, Hirmand, et al.
Publicado: (2022) -
Clinical phenogroups are more effective than left ventricular ejection fraction categories in stratifying heart failure outcomes
por: Gevaert, Andreas B., et al.
Publicado: (2021) -
Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction
por: Rabkin, Simon W., et al.
Publicado: (2023) -
Heart failure with preserved ejection fraction
por: Rigolli, Marzia, et al.
Publicado: (2013)