Cargando…

Ventricular Unloading Using the Impella(TM) Device in Cardiogenic Shock

Cardiogenic shock (CS) remains a leading cause of hospital death. However, the use of mechanical circulatory support has fundamentally changed CS management over the last decade and is rapidly increasing. In contrast to extracorporeal membrane oxygenation as well as counterpulsation with an intraaor...

Descripción completa

Detalles Bibliográficos
Autores principales: Attinger-Toller, Adrian, Bossard, Matthias, Cioffi, Giacomo Maria, Tersalvi, Gregorio, Madanchi, Mehdi, Bloch, Andreas, Kobza, Richard, Cuculi, Florim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984099/
https://www.ncbi.nlm.nih.gov/pubmed/35402561
http://dx.doi.org/10.3389/fcvm.2022.856870
Descripción
Sumario:Cardiogenic shock (CS) remains a leading cause of hospital death. However, the use of mechanical circulatory support has fundamentally changed CS management over the last decade and is rapidly increasing. In contrast to extracorporeal membrane oxygenation as well as counterpulsation with an intraaortic balloon pump, ventricular unloading by the Impella™ device actively reduces ventricular volume as well as pressure and augments systemic blood flow at the same time. By improving myocardial oxygen supply and enhancing systemic circulation, the Impella device potentially protects myocardium, facilitates ventricular recovery and may interrupt the shock spiral. So far, the evidence supporting the use of Impella™ in CS patients derives mostly from observational studies, and there is a need for adequate randomized trials. However, the Impella™ device appears a promising technology for management of CS patients. But a profound understanding of the device, its physiologic impact and clinical application are all important when evaluating CS patients for percutaneous circulatory support. This review provides a comprehensive overview of the percutaneous assist device Impella™. Moreover, it highlights in depth the rationale for ventricular unloading in CS and describes practical aspects to optimize care for patients requiring hemodynamic support.