Cargando…

Learning to Centralize Dual-Arm Assembly

Robotic manipulators are widely used in modern manufacturing processes. However, their deployment in unstructured environments remains an open problem. To deal with the variety, complexity, and uncertainty of real-world manipulation tasks, it is essential to develop a flexible framework with reduced...

Descripción completa

Detalles Bibliográficos
Autores principales: Alles, Marvin, Aljalbout, Elie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984145/
https://www.ncbi.nlm.nih.gov/pubmed/35402518
http://dx.doi.org/10.3389/frobt.2022.830007
Descripción
Sumario:Robotic manipulators are widely used in modern manufacturing processes. However, their deployment in unstructured environments remains an open problem. To deal with the variety, complexity, and uncertainty of real-world manipulation tasks, it is essential to develop a flexible framework with reduced assumptions on the environment characteristics. In recent years, reinforcement learning (RL) has shown great results for single-arm robotic manipulation. However, research focusing on dual-arm manipulation is still rare. From a classical control perspective, solving such tasks often involves complex modeling of interactions between two manipulators and the objects encountered in the tasks, as well as the two robots coupling at a control level. Instead, in this work, we explore the applicability of model-free RL to dual-arm assembly. As we aim to contribute toward an approach that is not limited to dual-arm assembly but dual-arm manipulation in general, we keep modeling efforts at a minimum. Hence, to avoid modeling the interaction between the two robots and the used assembly tools, we present a modular approach with two decentralized single-arm controllers, which are coupled using a single centralized learned policy. We reduce modeling effort to a minimum by using sparse rewards only. Our architecture enables successful assembly and simple transfer from simulation to the real world. We demonstrate the effectiveness of the framework on dual-arm peg-in-hole and analyze sample efficiency and success rates for different action spaces. Moreover, we compare results on different clearances and showcase disturbance recovery and robustness when dealing with position uncertainties. Finally, we zero-shot transfer policies trained in simulation to the real world and evaluate their performance. Videos of the experiments are available at the project website (https://sites.google.com/view/dual-arm-assembly/home).