Cargando…
Capturing functional relations in fluid–structure interaction via machine learning
While fluid–structure interaction (FSI) problems are ubiquitous in various applications from cell biology to aerodynamics, they involve huge computational overhead. In this paper, we adopt a machine learning (ML)-based strategy to bypass the detailed FSI analysis that requires cumbersome simulations...
Autores principales: | Soni, Tejas, Sharma, Ashwani, Dutta, Rajdeep, Dutta, Annwesha, Jayavelu, Senthilnath, Sarkar, Saikat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984386/ https://www.ncbi.nlm.nih.gov/pubmed/35401993 http://dx.doi.org/10.1098/rsos.220097 |
Ejemplares similares
-
Comparing data driven and physics inspired models for hopping transport in organic field effect transistors
por: Lakshminarayanan, Madhavkrishnan, et al.
Publicado: (2021) -
Extracting film thickness and optical constants from spectrophotometric data by evolutionary optimization
por: Dutta, Rajdeep, et al.
Publicado: (2022) -
Fluid mechanics and hydraulic machines
por: Gupta, S C
Publicado: (2006) -
Process Machine Interactions: Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures
por: Denkena, Berend, et al.
Publicado: (2013) -
ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction
por: Braza, Marianna, et al.
Publicado: (2016)