Cargando…
The development of imin-based tandem Michael–Mannich cyclocondensation through a single-electron transfer (SET)/energy transfer (EnT) pathway in the use of methylene blue (MB(+)) as a photo-redox catalyst
A four-component green tandem approach for the metal-free synthesis of polyfunctionalized dihydro-2-oxypyrroles was devised using the Michael–Mannich cyclocondensation of amines, dialkyl acetylenedicarboxylaes, and formaldehyde. Photo-excited state functions generated from methylene blue (MB(+)) wer...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984404/ https://www.ncbi.nlm.nih.gov/pubmed/35425003 http://dx.doi.org/10.1039/d2ra01190e |
Sumario: | A four-component green tandem approach for the metal-free synthesis of polyfunctionalized dihydro-2-oxypyrroles was devised using the Michael–Mannich cyclocondensation of amines, dialkyl acetylenedicarboxylaes, and formaldehyde. Photo-excited state functions generated from methylene blue (MB(+)) were employed as single-electron transfer (SET) and energy transfer (EnT) catalysts at ambient temperature in an ethanol solvent, employing visible light as a renewable energy source in the air atmosphere. This study aims to increase the usage of a non-metal cationic dye that is both inexpensive and widely available. Methylene blue is photochemically produced with the least amount of a catalyst due to its high yields, energy-effectiveness, high atom economy, time-saving features of the reaction, and operational simplicity. As a result, a variety of ecological and long-term chemical features are achieved. Surprisingly, such cyclization can be done on a gram scale, implying that the process has industrial potential. |
---|