Cargando…
Graph Neural Networks for Charged Particle Tracking on FPGAs
The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC). Graph neural networks (GNNs) a...
Autores principales: | Elabd, Abdelrahman, Razavimaleki, Vesal, Huang, Shi-Yu, Duarte, Javier, Atkinson, Markus, DeZoort, Gage, Elmer, Peter, Hauck, Scott, Hu, Jin-Xuan, Hsu, Shih-Chieh, Lai, Bo-Cheng, Neubauer, Mark, Ojalvo, Isobel, Thais, Savannah, Trahms, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984615/ https://www.ncbi.nlm.nih.gov/pubmed/35402906 http://dx.doi.org/10.3389/fdata.2022.828666 |
Ejemplares similares
-
Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
por: Heintz, Aneesh, et al.
Publicado: (2020) -
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
por: Iiyama, Yutaro, et al.
Publicado: (2021) -
Charged particle tracking via edge-classifying interaction networks
por: DeZoort, Gage
Publicado: (2021) -
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023) -
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021)