Cargando…
A machine learning enabled affective E-learning system model
The purpose of this study is to propose an e-learning system model for learning content personalisation based on students’ emotions. The proposed system collects learners’ brainwaves using a portable Electroencephalogram and processes them via a supervised machine learning algorithm, named K-nearest...
Autores principales: | Liu, Xinyang, Ardakani, Saeid Pourroostaei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984673/ https://www.ncbi.nlm.nih.gov/pubmed/35399782 http://dx.doi.org/10.1007/s10639-022-11010-x |
Ejemplares similares
-
An urban-level prediction of lockdown measures impact on the prevalence of the COVID-19 pandemic
por: Pourroostaei Ardakani, Saeid, et al.
Publicado: (2022) -
Space and social distancing in managing and preventing COVID-19 community spread: An overview
por: Cheshmehzangi, Ali, et al.
Publicado: (2023) -
Machine learning enables prediction of metabolic system evolution in bacteria
por: Konno, Naoki, et al.
Publicado: (2023) -
The BondMachine toolkit: Enabling Machine Learning on FPGA
por: Mariotti, Mirko, et al.
Publicado: (2019) -
Machine Learning Enabled Performance Prediction Model for Massive-MIMO HetNet System
por: Bandopadhaya, Shuvabrata, et al.
Publicado: (2021)