Cargando…
Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO
The industrial application of hydrate technology is greatly hindered by its slow generation rate, low gas storage rate, harsh generation conditions, and poor environmental friendliness of traditional additives. In this paper, the kinetic and thermodynamic promotion effects of graphene oxide (GO) and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984922/ https://www.ncbi.nlm.nih.gov/pubmed/35424779 http://dx.doi.org/10.1039/d1ra09330d |
_version_ | 1784682278534774784 |
---|---|
author | Wang, Ruirui Zhou, Hang Yang, Baoya Zhao, Weilong Song, Jun Zheng, Haikun Hao, Xiaoru Sheng, Wei |
author_facet | Wang, Ruirui Zhou, Hang Yang, Baoya Zhao, Weilong Song, Jun Zheng, Haikun Hao, Xiaoru Sheng, Wei |
author_sort | Wang, Ruirui |
collection | PubMed |
description | The industrial application of hydrate technology is greatly hindered by its slow generation rate, low gas storage rate, harsh generation conditions, and poor environmental friendliness of traditional additives. In this paper, the kinetic and thermodynamic promotion effects of graphene oxide (GO) and recovered graphene oxide (Re-GO) on methane hydrate in different systems were studied by the constant volume methods. The promotion mechanism was analyzed from the micro perspectives of molecular physical properties, interfacial reaction, and nucleation sites. It is found that GO has an excellent kinetic and thermodynamic promotion effect on CH(4) hydrate generation. After the recovery process, the thermodynamic effect of Re-GO is basically unchanged, and the kinetic promotion effect is slightly reduced. Furthermore, it is verified that the GO material itself does not have a memory effect in hydrate formation. The results show that GO is an excellent accelerator of CH(4) hydrate formation with high recovery value, which provides essential data and an experimental basis for the research and application of graphene oxide and hydrate technology in energy storage and cold storage. |
format | Online Article Text |
id | pubmed-8984922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89849222022-04-13 Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO Wang, Ruirui Zhou, Hang Yang, Baoya Zhao, Weilong Song, Jun Zheng, Haikun Hao, Xiaoru Sheng, Wei RSC Adv Chemistry The industrial application of hydrate technology is greatly hindered by its slow generation rate, low gas storage rate, harsh generation conditions, and poor environmental friendliness of traditional additives. In this paper, the kinetic and thermodynamic promotion effects of graphene oxide (GO) and recovered graphene oxide (Re-GO) on methane hydrate in different systems were studied by the constant volume methods. The promotion mechanism was analyzed from the micro perspectives of molecular physical properties, interfacial reaction, and nucleation sites. It is found that GO has an excellent kinetic and thermodynamic promotion effect on CH(4) hydrate generation. After the recovery process, the thermodynamic effect of Re-GO is basically unchanged, and the kinetic promotion effect is slightly reduced. Furthermore, it is verified that the GO material itself does not have a memory effect in hydrate formation. The results show that GO is an excellent accelerator of CH(4) hydrate formation with high recovery value, which provides essential data and an experimental basis for the research and application of graphene oxide and hydrate technology in energy storage and cold storage. The Royal Society of Chemistry 2022-03-21 /pmc/articles/PMC8984922/ /pubmed/35424779 http://dx.doi.org/10.1039/d1ra09330d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Wang, Ruirui Zhou, Hang Yang, Baoya Zhao, Weilong Song, Jun Zheng, Haikun Hao, Xiaoru Sheng, Wei Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO |
title | Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO |
title_full | Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO |
title_fullStr | Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO |
title_full_unstemmed | Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO |
title_short | Experimental study of methane hydrate generation characteristics in the presence of GO and Re-GO |
title_sort | experimental study of methane hydrate generation characteristics in the presence of go and re-go |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984922/ https://www.ncbi.nlm.nih.gov/pubmed/35424779 http://dx.doi.org/10.1039/d1ra09330d |
work_keys_str_mv | AT wangruirui experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego AT zhouhang experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego AT yangbaoya experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego AT zhaoweilong experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego AT songjun experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego AT zhenghaikun experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego AT haoxiaoru experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego AT shengwei experimentalstudyofmethanehydrategenerationcharacteristicsinthepresenceofgoandrego |