Cargando…
Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I
This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine–polyaniline as a hole transfer layer, this dev...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984948/ https://www.ncbi.nlm.nih.gov/pubmed/35424820 http://dx.doi.org/10.1039/d1ra08908k |
_version_ | 1784682283879366656 |
---|---|
author | Torabi, Nahid Rousseva, Sylvia Chen, Qi Ashrafi, Ali Kermanpur, Ahmad Chiechi, Ryan C. |
author_facet | Torabi, Nahid Rousseva, Sylvia Chen, Qi Ashrafi, Ali Kermanpur, Ahmad Chiechi, Ryan C. |
author_sort | Torabi, Nahid |
collection | PubMed |
description | This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine–polyaniline as a hole transfer layer, this device architecture results in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm(−2) demonstrating good coupling between photosystem I and the electrodes. The best-performing device reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem I-based photovoltaic device that has been reported to date. Our results demonstrate that the functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be improved through the modification of electrodes with efficient charge-transfer layers. The combination of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for photosystem I and other biological molecules. |
format | Online Article Text |
id | pubmed-8984948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89849482022-04-13 Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I Torabi, Nahid Rousseva, Sylvia Chen, Qi Ashrafi, Ali Kermanpur, Ahmad Chiechi, Ryan C. RSC Adv Chemistry This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine–polyaniline as a hole transfer layer, this device architecture results in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm(−2) demonstrating good coupling between photosystem I and the electrodes. The best-performing device reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem I-based photovoltaic device that has been reported to date. Our results demonstrate that the functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be improved through the modification of electrodes with efficient charge-transfer layers. The combination of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for photosystem I and other biological molecules. The Royal Society of Chemistry 2022-03-22 /pmc/articles/PMC8984948/ /pubmed/35424820 http://dx.doi.org/10.1039/d1ra08908k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Torabi, Nahid Rousseva, Sylvia Chen, Qi Ashrafi, Ali Kermanpur, Ahmad Chiechi, Ryan C. Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I |
title | Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I |
title_full | Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I |
title_fullStr | Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I |
title_full_unstemmed | Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I |
title_short | Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I |
title_sort | graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem i |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984948/ https://www.ncbi.nlm.nih.gov/pubmed/35424820 http://dx.doi.org/10.1039/d1ra08908k |
work_keys_str_mv | AT torabinahid grapheneoxidedecoratedwithgoldenablesefficientbiophotovolaticcellsincorporatingphotosystemi AT roussevasylvia grapheneoxidedecoratedwithgoldenablesefficientbiophotovolaticcellsincorporatingphotosystemi AT chenqi grapheneoxidedecoratedwithgoldenablesefficientbiophotovolaticcellsincorporatingphotosystemi AT ashrafiali grapheneoxidedecoratedwithgoldenablesefficientbiophotovolaticcellsincorporatingphotosystemi AT kermanpurahmad grapheneoxidedecoratedwithgoldenablesefficientbiophotovolaticcellsincorporatingphotosystemi AT chiechiryanc grapheneoxidedecoratedwithgoldenablesefficientbiophotovolaticcellsincorporatingphotosystemi |