Cargando…

PPFIA4 promotes castration-resistant prostate cancer by enhancing mitochondrial metabolism through MTHFD2

BACKGROUND: The development of castration-resistant prostate cancer (CRPC) remains a major obstacle in the treatment of prostate cancer (PCa). Dysregulated mitochondrial function has been linked to the initiation and progression of diverse human cancers. Deciphering the novel molecular mechanisms un...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Ru, Feng, Tingting, Gao, Lin, Sun, Feifei, Zhou, Qianqian, Wang, Xin, Liu, Junmei, Zhang, Wenbo, Wang, Meng, Xiong, Xueting, Jia, Wenqiao, Chen, Weiwen, Wang, Lin, Han, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8985307/
https://www.ncbi.nlm.nih.gov/pubmed/35382861
http://dx.doi.org/10.1186/s13046-022-02331-3
Descripción
Sumario:BACKGROUND: The development of castration-resistant prostate cancer (CRPC) remains a major obstacle in the treatment of prostate cancer (PCa). Dysregulated mitochondrial function has been linked to the initiation and progression of diverse human cancers. Deciphering the novel molecular mechanisms underlying mitochondrial function may provide important insights for developing novel therapeutics for CRPC. METHODS: We investigate the expression of the protein tyrosine phosphatase receptor type F polypeptide interacting protein alpha 4 (PPFIA4) using public datasets and tumor specimens from PCa cases by immunohistochemistry. Gain- and loss-of-function studies are performed in PCa cell lines and mouse models of subcutaneous xenograft to characterize the role of PPFIA4 in CRPC. Gene expression regulation is evaluated by a series of molecular and biochemical experiments in PCa cell lines. The therapeutic effects of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) inhibitor combined enzalutamide are assessed using in vitro functional assays and in vivo mouse models. RESULTS: We show that the increase of PPFIA4 exacerbates aggressive phenotype resembling CRPC. A fraction of PPFIA4 localizes to mitochondria and interacts with MTHFD2, a key enzyme for one-carbon metabolism. Androgen deprivation increases the translocation of PPFIA4 into mitochondria and increases the interaction between PPFIA4 and MTHFD2, which result in the elevation of tyrosine phosphorylated MTHFD2. Consequently, the levels of NADPH synthesis increase, resulting in protection against androgen deprivation-induced mitochondrial dysfunction, as well as promotion of tumor growth. Clinically, PPFIA4 expression is significantly increased in CRPC tissues compared with localized PCa ones. Importantly, an MTHFD2 inhibitor, DS18561882, combined with enzalutamide can significantly inhibit CRPC cell proliferation in vitro and tumor growth in vivo. CONCLUSION: Overall, our findings reveal a PPFIA4-MTHFD2 complex in mitochondria that links androgen deprivation to mitochondrial metabolism and mitochondrial dysfunction, which suggest a potential strategy to inhibit CRPC progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-022-02331-3.