Cargando…
Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering
The Python package mlreflect is demonstrated, which implements an optimized pipeline for the automated analysis of reflectometry data using machine learning. The package combines several training and data treatment techniques discussed in previous publications. The predictions made by the neural net...
Autores principales: | Greco, Alessandro, Starostin, Vladimir, Edel, Evelyn, Munteanu, Valentin, Rußegger, Nadine, Dax, Ingrid, Shen, Chen, Bertram, Florian, Hinderhofer, Alexander, Gerlach, Alexander, Schreiber, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8985606/ https://www.ncbi.nlm.nih.gov/pubmed/35497655 http://dx.doi.org/10.1107/S1600576722002230 |
Ejemplares similares
-
Machine learning for scattering data: strategies, perspectives and applications to surface scattering
por: Hinderhofer, Alexander, et al.
Publicado: (2023) -
Fast fitting of reflectivity data of growing thin films using neural networks
por: Greco, Alessandro, et al.
Publicado: (2019) -
Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
por: Pithan, Linus, et al.
Publicado: (2023) -
Neutron quantum reflection
por: Frank, A I, et al.
Publicado: (1993) -
Advice on describing Bayesian analysis of neutron and X-ray reflectometry
por: McCluskey, Andrew R., et al.
Publicado: (2023)