Cargando…
Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells
Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex datasets. Here, we analyzed over 490,000,000 data points to compare 10 different ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-)transcriptomes to identify genes associated with...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986156/ https://www.ncbi.nlm.nih.gov/pubmed/35399953 http://dx.doi.org/10.3389/fendo.2022.853863 |
_version_ | 1784682490139508736 |
---|---|
author | Wong, Wilson K. M. Thorat, Vinod Joglekar, Mugdha V. Dong, Charlotte X. Lee, Hugo Chew, Yi Vee Bhave, Adwait Hawthorne, Wayne J. Engin, Feyza Pant, Aniruddha Dalgaard, Louise T. Bapat, Sharda Hardikar, Anandwardhan A. |
author_facet | Wong, Wilson K. M. Thorat, Vinod Joglekar, Mugdha V. Dong, Charlotte X. Lee, Hugo Chew, Yi Vee Bhave, Adwait Hawthorne, Wayne J. Engin, Feyza Pant, Aniruddha Dalgaard, Louise T. Bapat, Sharda Hardikar, Anandwardhan A. |
author_sort | Wong, Wilson K. M. |
collection | PubMed |
description | Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex datasets. Here, we analyzed over 490,000,000 data points to compare 10 different ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-)transcriptomes to identify genes associated with the presence or absence of insulin transcript(s). Prediction accuracy/sensitivity of each ML-workflow was tested in a separate validation dataset (N=2,913). Ensemble ML-workflows, in particular Random Forest ML-algorithm delivered high predictive power (AUC=0.83) and sensitivity (0.98), compared to other algorithms. The transcripts identified through these analyses also demonstrated significant correlation with insulin in bulk RNA-seq data from human islets. The top-10 features, (including IAPP, ADCYAP1, LDHA and SST) common to the three Ensemble ML-workflows were significantly dysregulated in scRNA-seq datasets from Ire-1α(β-/-) mice that demonstrate dedifferentiation of pancreatic β-cells in a model of type 1 diabetes (T1D) and in pancreatic single cells from individuals with type 2 Diabetes (T2D). Our findings provide direct comparison of ML-workflows in big data analyses, identify key elements associated with insulin transcription and provide workflows for future analyses. |
format | Online Article Text |
id | pubmed-8986156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89861562022-04-07 Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells Wong, Wilson K. M. Thorat, Vinod Joglekar, Mugdha V. Dong, Charlotte X. Lee, Hugo Chew, Yi Vee Bhave, Adwait Hawthorne, Wayne J. Engin, Feyza Pant, Aniruddha Dalgaard, Louise T. Bapat, Sharda Hardikar, Anandwardhan A. Front Endocrinol (Lausanne) Endocrinology Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex datasets. Here, we analyzed over 490,000,000 data points to compare 10 different ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-)transcriptomes to identify genes associated with the presence or absence of insulin transcript(s). Prediction accuracy/sensitivity of each ML-workflow was tested in a separate validation dataset (N=2,913). Ensemble ML-workflows, in particular Random Forest ML-algorithm delivered high predictive power (AUC=0.83) and sensitivity (0.98), compared to other algorithms. The transcripts identified through these analyses also demonstrated significant correlation with insulin in bulk RNA-seq data from human islets. The top-10 features, (including IAPP, ADCYAP1, LDHA and SST) common to the three Ensemble ML-workflows were significantly dysregulated in scRNA-seq datasets from Ire-1α(β-/-) mice that demonstrate dedifferentiation of pancreatic β-cells in a model of type 1 diabetes (T1D) and in pancreatic single cells from individuals with type 2 Diabetes (T2D). Our findings provide direct comparison of ML-workflows in big data analyses, identify key elements associated with insulin transcription and provide workflows for future analyses. Frontiers Media S.A. 2022-03-23 /pmc/articles/PMC8986156/ /pubmed/35399953 http://dx.doi.org/10.3389/fendo.2022.853863 Text en Copyright © 2022 Wong, Thorat, Joglekar, Dong, Lee, Chew, Bhave, Hawthorne, Engin, Pant, Dalgaard, Bapat and Hardikar https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Wong, Wilson K. M. Thorat, Vinod Joglekar, Mugdha V. Dong, Charlotte X. Lee, Hugo Chew, Yi Vee Bhave, Adwait Hawthorne, Wayne J. Engin, Feyza Pant, Aniruddha Dalgaard, Louise T. Bapat, Sharda Hardikar, Anandwardhan A. Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells |
title | Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells |
title_full | Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells |
title_fullStr | Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells |
title_full_unstemmed | Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells |
title_short | Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells |
title_sort | analysis of half a billion datapoints across ten machine-learning algorithms identifies key elements associated with insulin transcription in human pancreatic islet cells |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986156/ https://www.ncbi.nlm.nih.gov/pubmed/35399953 http://dx.doi.org/10.3389/fendo.2022.853863 |
work_keys_str_mv | AT wongwilsonkm analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT thoratvinod analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT joglekarmugdhav analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT dongcharlottex analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT leehugo analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT chewyivee analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT bhaveadwait analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT hawthornewaynej analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT enginfeyza analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT pantaniruddha analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT dalgaardlouiset analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT bapatsharda analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells AT hardikaranandwardhana analysisofhalfabilliondatapointsacrosstenmachinelearningalgorithmsidentifieskeyelementsassociatedwithinsulintranscriptioninhumanpancreaticisletcells |