Cargando…
In silico proof of principle of machine learning-based antibody design at unconstrained scale
Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences fo...
Autores principales: | Akbar, Rahmad, Robert, Philippe A., Weber, Cédric R., Widrich, Michael, Frank, Robert, Pavlović, Milena, Scheffer, Lonneke, Chernigovskaya, Maria, Snapkov, Igor, Slabodkin, Andrei, Mehta, Brij Bhushan, Miho, Enkelejda, Lund-Johansen, Fridtjof, Andersen, Jan Terje, Hochreiter, Sepp, Hobæk Haff, Ingrid, Klambauer, Günter, Sandve, Geir Kjetil, Greiff, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986205/ https://www.ncbi.nlm.nih.gov/pubmed/35377271 http://dx.doi.org/10.1080/19420862.2022.2031482 |
Ejemplares similares
-
Individualized VDJ recombination predisposes the available Ig sequence space
por: Slabodkin, Andrei, et al.
Publicado: (2021) -
Access to ground truth at unconstrained size makes simulated data as indispensable as experimental data for bioinformatics methods development and benchmarking
por: Sandve, Geir Kjetil, et al.
Publicado: (2022) -
Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification
por: Kanduri, Chakravarthi, et al.
Publicado: (2022) -
CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching
por: Rognes, Torbjørn, et al.
Publicado: (2022) -
simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods
por: Kanduri, Chakravarthi, et al.
Publicado: (2023)