Cargando…
Vehicles for Drug Administration to Children: Results and Learnings from an In-Depth Screening of FDA-Recommended Liquids and Soft Foods for Product Quality Assessment
PURPOSE: Mixing with liquids or soft foods is a common procedure to improve acceptability of oral medicines in children but may affect drug stability and the in vivo performance of the administered drug product. The aim of the present study was to obtain an overview of the variability of critical at...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986743/ https://www.ncbi.nlm.nih.gov/pubmed/35233727 http://dx.doi.org/10.1007/s11095-022-03208-y |
Sumario: | PURPOSE: Mixing with liquids or soft foods is a common procedure to improve acceptability of oral medicines in children but may affect drug stability and the in vivo performance of the administered drug product. The aim of the present study was to obtain an overview of the variability of critical attributes of commonly used vehicles and to identify which vehicle characteristics need to be considered when developing in vitro methods for evaluating product quality. METHODS: One product of each vehicle listed in the FDA draft guidance “Use of Liquids and/or Soft Foods as Vehicles for Drug Administration” was analyzed with regard to composition, calorific content and physicochemical properties. RESULTS: The studied vehicles show wide variability, both in composition and physicochemical properties. No correlation was observed between vehicle composition and physicochemical properties. Comparison of results of the present study with previously published data also provided variability in physicochemical properties within individual vehicle types. CONCLUSIONS: To identify acceptable (qualified) vehicles for global drug product labeling, it is important that the vehicles selected for in vitro compatibility screening reflect the variability in composition and essential physicochemical properties of the vehicles recommended on the product label, rather than relying on results obtained with a single vehicle of each type. Future activities will focus on the development of standardized dosing vehicles that can represent key vehicle characteristics in all their variability to ensure reliable risk assessment. |
---|