Cargando…
Differentiating solitary brain metastases from glioblastoma by radiomics features derived from MRI and 18F-FDG-PET and the combined application of multiple models
This study aimed to explore the ability of radiomics derived from both MRI and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) images to differentiate glioblastoma (GBM) from solitary brain metastases (SBM) and to investigate the combined application of multiple models. The imaging...
Autores principales: | Cao, Xu, Tan, Duo, Liu, Zhi, Liao, Meng, Kan, Yubo, Yao, Rui, Zhang, Liqiang, Nie, Lisha, Liao, Ruikun, Chen, Shanxiong, Xie, Mingguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986767/ https://www.ncbi.nlm.nih.gov/pubmed/35388124 http://dx.doi.org/10.1038/s41598-022-09803-8 |
Ejemplares similares
-
An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and (18)F-FDG PET Imaging Improves the Performance of Differentiating Glioblastoma From Solitary Brain Metastases
por: Zhang, Liqiang, et al.
Publicado: (2021) -
The Application of DTCWT on MRI-Derived Radiomics for Differentiation of Glioblastoma and Solitary Brain Metastases
por: Wu, Wen-Feng, et al.
Publicado: (2022) -
(18)F-FDG-PET-based radiomics features to distinguish primary central nervous system lymphoma from glioblastoma
por: Kong, Ziren, et al.
Publicado: (2019) -
Solitary Internal Mammary Lymph Node Metastases Detected by (18)F-FDG-PET/CT in Ovarian Cancer
por: Bernardi, Alessandra, et al.
Publicado: (2011) -
Diagnostic Performance of Machine Learning Models Based on (18)F-FDG PET/CT Radiomic Features in the Classification of Solitary Pulmonary Nodules
por: Salihoğlu, Yavuz Sami, et al.
Publicado: (2022)