Cargando…
Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model
The inability to accurately, efficiently label large, open-access medical imaging datasets limits the widespread implementation of artificial intelligence models in healthcare. There have been few attempts, however, to automate the annotation of such public databases; one approach, for example, focu...
Autores principales: | Kim, Doyun, Chung, Joowon, Choi, Jongmun, Succi, Marc D., Conklin, John, Longo, Maria Gabriela Figueiro, Ackman, Jeanne B., Little, Brent P., Petranovic, Milena, Kalra, Mannudeep K., Lev, Michael H., Do, Synho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986787/ https://www.ncbi.nlm.nih.gov/pubmed/35388010 http://dx.doi.org/10.1038/s41467-022-29437-8 |
Ejemplares similares
-
Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach
por: Chung, Joowon, et al.
Publicado: (2022) -
Author Correction: Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach
por: Chung, Joowon, et al.
Publicado: (2023) -
MarkIt: A Collaborative Artificial Intelligence Annotation Platform Leveraging Blockchain For Medical Imaging Research
por: Witowski, Jan, et al.
Publicado: (2021) -
Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm
por: Dasegowda, Giridhar, et al.
Publicado: (2023) -
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans
por: , Nillmani, et al.
Publicado: (2022)