Cargando…
Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene
As the simplest alkyne and an abundant chemical feedstock, acetylene is an ideal two-carbon building block. However, in contrast to substituted alkynes, catalytic methods to incorporate acetylene into fine chemicals are quite limited. Herein, we developed a photoredox-catalyzed synthetic protocol fo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986794/ https://www.ncbi.nlm.nih.gov/pubmed/35388000 http://dx.doi.org/10.1038/s41467-022-29556-2 |
Sumario: | As the simplest alkyne and an abundant chemical feedstock, acetylene is an ideal two-carbon building block. However, in contrast to substituted alkynes, catalytic methods to incorporate acetylene into fine chemicals are quite limited. Herein, we developed a photoredox-catalyzed synthetic protocol for diverse C2-linked molecules via a molecular glue strategy using gaseous acetylene under mild conditions. Initiated by addition of an acyl radical to acetylene, two cascade transformations follow. One involves a double addition for the formation of 1,4-diketones and the other where the intermediate vinyl ketone is intercepted by a radical formed from a heterocycle. In addition to making two new C-C bonds, two C-H bonds are also created in two mechanistically distinct ways: one via a C-H abstraction and the other via protonation. This system offers a reliable and safe way to incorporate gaseous acetylene into fine chemicals and expands the utility of acetylene in organic synthesis. |
---|